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1 General setting and incompressible Navier-Stokes
system

Consider the a regular domain Ω ⊂ Rd with d = 2, 3 and the incompressible
Navier-Stokes system:

∂tu + u · ∇u− ν∆u +∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on ∂Ω.

(1)

In this case, u ∈ Rd is the velocity field, p ∈ R is the pressure field, f ∈ Rd are
the external forces (gravity for example) and we enforce homogeneous Dirichlet
boundary conditions for the sake of simplicity.

Remark 1.1 (Boussinesq’s approximation). We have done the Boussinesq’s
approximation, so that we have divided all the terms of the first equation by ρ0

and we have takend the normalized pressure p to actually be p/ρ0.

Remark 1.2 (The role of the pressure p). It is important to notice that now
the pressure p does not have any thermodynamical interpretation as it is the
case for the compressible Navier-Stokes system. In the latter case, the mass
balance (second equation) and the linear momentum balance (first equation) are
not sufficient to close the system, and then we need an energy balance (not listed
here). In the incompressible case, the energy balance is decoupled from the mass
and the momentum balance. Moreover, the pressure p becomes nothing but a
Lagrange multiplier enforcing the constraint:

∇ · u = 0. (2)

Remark 1.3 (The role of the pressure p bis). Consider Eq. (1) where we neglect
the inertial term ∂tu+u·∇u (Stokes system). Then, under an appropriate choice
of search spaces V for the velocity and Q for the pressure, setting:

L(v, q) =

∫
Ω

ν

2
|∇v|2dx−

∫
Ω

f · vdx−
∫

Ω

(∇ · v) qdx, (3)
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we can show the equivalence between problem (1) and the following saddle-point
problem:

L(u, p) = max
q∈Q

min
v∈V
L(v, q). (4)

This shows the role of p as Lagrange multiplier for the incompressibility con-
straint.

Remark 1.4 (A piece of folklore on the Navier-Stokes system). Though the
Navier-Stokes system (1) may seem simple, the existence and the regularity of
the solution for d = 3 is one of the “problems of the millenary” of the Clay
institute. The proof for the case d = 2 has been done in 1958 by Ladyzhenskaya
[4] and relies on the following form of the more general Gagliardo-Niremberg
inequality: if u (scalar function of two variables) is a weakly differentiable func-
tion vanishing on ∂Ω in the sense of the trace, there exists C = C(Ω) > 0 such
that:

‖u‖L4(Ω) ≤ C ‖u‖
1/2
L2(Ω) ‖∇u‖

1/2

[L2(Ω)]2
. (5)

In the case d = 3, the inequality becomes

‖u‖L4(Ω) ≤ C ‖u‖
1/4
L2(Ω) ‖∇u‖

3/4

[L2(Ω)]3
, (6)

which is not enough to conclude.

Remark 1.5 (2D and 3D are not the same). Consider the Navier-Stokes system
for d = 2 or for d = 3 has a huge impact on the outcome, especially as far as
turbulence is concerned. Consider the vorticity ω, defined as:

ω =

(
∂uy
∂x
− ∂ux

∂y

)
ez, (7)

for d = 2 and by:

ω = ∇× u =

∣∣∣∣∣∣
ex ey ez
∂x ∂y ∂z
ux uy uz

∣∣∣∣∣∣ , (8)

for d = 3. If we compute the Navier-Stokes equation for the vorticity (take the
curl of momentum balance of the Navier-Stokes system and use some vectorial
identity), we gain:

Dω

Dt
:= ∂tω + u · ∇ω = ν∆ω +∇× f , (9)

for d = 2 and

Dω

Dt
:= ∂tω + u · ∇ω = ω · ∇u︸ ︷︷ ︸

!!!

+ν∆ω +∇× f , (10)

for d = 3. What makes 3D turbulence way different from 2D turbulence is the
presence of the term ω · ∇u, which vanishes in the two dimensional case since
the vorticity is orthogonal to the plan of motion.
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2 The Chorin-Temam method

An intuitive way of discretizing the Navier-Stokes system in time would be, once
we consider a time-step ∆t, to consider:

un+1−un

∆t + u? · ∇u?? − ν∆un+1 +∇pn+1 = fn+1 in Ω

∇ · un+1 = 0 in Ω

un+1 = 0 on ∂Ω,

(11)

where u? and u?? can be either un or un+1, giving birth to different kind of
difficulties, stability constraints, etc. This problem is rather hard to treat due
to the coupling between the velocity and the pressure field, so we decide to
perform an operator splitting and solve a first problem with solution ũn+1, for
which in general

∇ · ũn+1 6= 0 on Ω, (12)

called “prediction step”, followed by the solution of another problem (called
“correction step”) which provides un+1 satisfying the incompressibility con-
straint. This is:

(P) :

{
ũn+1−un

∆t + u? · ∇u?? − ν∆ũn+1 = fn+1 in Ω

BCP.
(13)

and

(C) :


un+1−ũn+1

∆t +∇pn+1 = 0 in Ω

∇ · un+1 = 0 in Ω

BCC,

(14)

where the boundary conditions are not specified for the moment. Nevertheless,
we still have a coupled equation between an unknown velocity and and unknown
pressure, thus we have to work a little bit harder.

We formally take the divengence of the first equation out of (14), which
yields:

∇ · un+1

∆t︸ ︷︷ ︸
=0

−∇ · ũ
n+1

∆t
+∇ · (∇pn+1) = 0, (15)

where we have used the second equation of (14). Remembering that ∇· (∇q) =
∆q, we obtain a new system for the pressure:

(C) :

{
−∆pn+1 = −∇·ũ

n+1

∆t in Ω

BCC,
(16)

which is nothing but a Poisson’s problem we can solve using our favourite solver.
One may ask about the destiny of un+1: taking again the first equation of (14),
we obtain the so-called “update step”:

(U) : un+1 = ũn+1 −∆t∇pn+1. (17)

Modulo some technicalities about the boundary conditions (ask me if you
want to know), we have recovered the so-called “Chorin-Temam” method (in-
troduced in 1967-68 by Chorin [1]), which is resumed as follows:
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1. Prediction step: Solve the advection-diffusion equation for the predicted
velocity field ũn+1 fulfilling the problem:

(P) :

{
ũn+1−un

∆t + u? · ∇u?? − ν∆ũn+1 = fn+1 in Ω

ũn+1 = 0 on ∂Ω.
(18)

This can be done using a numerical method such Finite Volumes, Finite
Differences (look at [5], which also presents the Chorin-Temam method)
or Finite Elements (the bible is [2], something more friendly [3]).

2. Correction step: Solve the following Poisson problem for the pressure
variable pn+1:

(C) :

{
−∆pn+1 = −∇·ũ

n+1

∆t in Ω

∇pn+1 · n = 0 on ∂Ω,
(19)

where n is the outward normal vector to ∂Ω. Again, this can be solved
by our favourite solver.

3. Projection step (of ũn+1 onto the divergence-free space): compute

(U) : un+1 = ũn+1 −∆t∇pn+1 on Ω. (20)

This is often done on the weak form of this equation.

Remark 2.1 (Splitting error and boundary layer). After some computations
done in the details we have skipped, one can show that only the condition:

un+1 · n = 0 on ∂Ω, (21)

is actually enforced on the velocity field through the Chorin-Temam method.
This creates a boundary layer on the pressure field with exponential decay, whose
thickness hBL has been estimated to be:

hBL ∝
√
ν∆t. (22)

This is one of the contributions to the overall splitting error of the method.

Remark 2.2 (Pressure problem not well posed). The value of the pressure
in Eq. (19) is defined up to a constant, since the boundary conditions are not
enough to fix it. This is not due to the Chorin-Temam method, since it was
already the case for the full Navier-Stokes system (1). In practice, one fixes the
value of the pressure at some point in the computational mesh to an arbitrary
value, or enforces that the pressure field has zero average on the domain.

Remark 2.3 (Stationary solution). Another drawback of the Chorin-Temam
method is that (try to prove it) in the case of stationary solution, the obtained
solution is not consistent with the stationary solution of the full Navier-Stokes
problem.
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3 The BDF-2 (Backward Differentiation Formula)
method

The Backward Differentiation Formula of order 2 is nothing but a method to
increase the order of the time discretization of the Navier-Stokes system (1). Of
course, it can be coupled with the Chorin-Temam method we have seen so far
without major difficulties.

We first illustrate the idea behind this method on a simple example: consider
the ordinary differential equation{

dtψ(t) = Φ (ψ(t), t)

ψ(t = 0) = ψ0,
(23)

for some smooth function Φ which can depend also directly on time. We decide
to discretize the time derivative in the following way:

dtψ(tn+1) ' αψ(tn+1) + βψ(tn) + γψ(tn−1). (24)

Supposing ψ smooth enough and performing Taylor expansions around tn+1

yields:

dtψ(tn+1) = (α+ β + γ)ψ(tn+1) + ∆t (−β − 2γ) dtψ(tn+1) (25)

+ ∆t2
(
β

2
+ 2γ

)
dttψ(tn+1) +O(∆t3). (26)

Enforcing consistency up to order 2:
α+ β + γ = 0

∆t (−β − 2γ) = 1

∆t2
(
β
2 + 2γ

)
= 0

→


α = 3

2∆t

β = − 2
∆t

γ = 1
2∆t .

(27)

This results in the BDF-2 formula:

dtψ(tn+1) ' 1

∆t

(
3

2
ψn+1 − 2ψn +

1

2
ψn−1

)
. (28)

Applying this idea to the Navier-Stokes system, we obtain:
3un+1−4un+un−1

2∆t + u? · ∇u?? − ν∆un+1 +∇pn+1 = fn+1 in Ω

∇ · un+1 = 0 in Ω

un+1 = 0 on ∂Ω,

(29)
We have to be slightly more careful about the choice of u? and u??. Indeed:

• Fully implicit discretization. As the name indicates, this scheme is
obtained by considering:

u? = u?? = un+1. (30)

It obviously grants the best results in terms of precision and stability but it
keeps the non-linearity of the equation (even in a Chorin-Temam method),
which should be adressed using a fixed-point or a Newton method.
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• Semi-implicit discretization. It consists in taking:

u? = 2un − un−1 u?? = un+1. (31)

The advantage of this discretization is the “linearization” of the problem
without going into severe problems concerning stability. This is a good
tradeoff between precision, simplicity and stability in many problems (not
all). This choice is justified by looking at the second order extrapolation of
un+1 as function of un and un−1, which then is the explicit discretization
of the value at time tn+1 using the values at the two previous time steps.

u(tn+1) = ζu(tn) + ηu(tn−1) (32)

= (ζ + η)u(tn+1) + ∆t (−ζ − 2η) ∂tu(tn+1) +O(∆t2), (33)

where the space variable is not listed for the sake of notation. Enforcing
consistency up to first order yields:

ζ = 2 η = −1. (34)

This is:
u? = 2un − un−1. (35)

• Fully explicit discretization. We take:

u? = u?? = 2un − un−1. (36)
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