Modal analysis for the linearized Rayleigh-Bénard problem

Thomas Bellotti - CMAP - Ecole polytechnique*

The starting point is the dimensionless form of the problem, which reads:

$$
\left\{\begin{array}{l}
\frac{1}{P}\left(\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}\right)=-\nabla \bar{\omega}+R \theta \mathbf{e}_{z}+\Delta \mathbf{u} \tag{1}\\
\partial_{t} \theta-u_{z}+\mathbf{u} \cdot \nabla \theta=\Delta \theta \\
\nabla \cdot \mathbf{u}=0
\end{array}\right.
$$

where P and R are dimensionless parameters given by:

$$
\begin{equation*}
P=\frac{\nu}{\chi} \quad R=\frac{\alpha g \Delta T h^{3}}{\nu \chi} \tag{2}
\end{equation*}
$$

and $\bar{\omega}$ is the dimensionless pressure variable along with \mathbf{e}_{z} the unit vector along z and $u_{z}:=\mathbf{u} \cdot \mathbf{e}_{z}$. We assume $|\mathbf{u}| \ll 1$ and $\theta \ll 1$ (infinitesimal), so that we can linearize the equations, meanining that the non-linear terms (i.e. $\mathbf{u} \cdot \nabla \mathbf{u}$ and $\mathbf{u} \cdot \nabla \theta)$ are supposed to be negligible. This yields:

$$
\left\{\begin{array}{l}
\frac{1}{P} \partial_{t} \mathbf{u}=-\nabla \bar{\omega}+R \theta \mathbf{e}_{z}+\Delta \mathbf{u} \tag{3}\\
\partial_{t} \theta-u_{z}=\Delta \theta \\
\nabla \cdot \mathbf{u}=0
\end{array}\right.
$$

We remember that for a vector field $\mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)$ written with respect to the cartesian system (that is not true for cylindrical and other systems of coordinates), the curl is given by:
$\nabla \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_{x} & v_{y} & v_{z}\end{array}\right|=\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right) \mathbf{e}_{x}+\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right) \mathbf{e}_{y}+\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right) \mathbf{e}_{z}$
We take the curl of the first equation of (3), having (we will eventually develop some more terms):

$$
\begin{equation*}
\frac{1}{P} \partial_{t}(\nabla \times \mathbf{u})=-\underbrace{\nabla \times(\nabla \bar{\omega})}_{=0}+R\left(\frac{\partial \theta}{\partial y} \mathbf{e}_{y}-\frac{\partial \theta}{\partial x} \mathbf{e}_{y}\right)+\Delta(\nabla \times \mathbf{u}), \tag{5}
\end{equation*}
$$

where we have used the fact that the curl of the gradient is always vanishing Taking the curl again for Eq. (5), gives:
$\frac{1}{P} \partial_{t}(\nabla \times \nabla \times \mathbf{u})=R\left(\frac{\partial^{2} \theta}{\partial z \partial y} \mathbf{e}_{y}-\frac{\partial^{2} \theta}{\partial y^{2}} \mathbf{e}_{z}+\frac{\partial^{2} \theta}{\partial z \partial x} \mathbf{e}_{x}-\frac{\partial^{2} \theta}{\partial x^{2}} \mathbf{e}_{z}\right)+\Delta(\nabla \times \nabla \times \mathbf{u})$.

[^0]We now develop the term $\nabla \times \nabla \times \mathbf{u}$ using the rule for the computation of the curl (twice) that we have seen so far. Instead of writing the whole result, we directly projet it on the z direction:

$$
\begin{equation*}
(\nabla \times \nabla \times \mathbf{u}) \cdot \mathbf{e}_{z}=\frac{\partial^{2} u_{x}}{\partial x \partial z}+\frac{\partial^{2} u_{y}}{\partial y \partial z}-\frac{\partial^{2} u_{z}}{\partial x^{2}}-\frac{\partial^{2} u_{z}}{\partial y^{2}} \tag{7}
\end{equation*}
$$

Before plugging back (7) in (6), we use the incompressibility constraint from (3) to simplify the expression. The constraint reads, in cartesian coordinates:

$$
\begin{equation*}
0=\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}+\frac{\partial u_{z}}{\partial z} \quad \rightarrow \quad \frac{\partial^{2} u_{y}}{\partial y \partial z}=-\frac{\partial^{2} u_{x}}{\partial x \partial z}-\frac{\partial^{2} u_{z}}{\partial z^{2}} . \tag{8}
\end{equation*}
$$

We are left with:

$$
\begin{equation*}
(\nabla \times \nabla \times \mathbf{u}) \cdot \mathbf{e}_{z}=-\frac{\partial^{2} u_{z}}{\partial x^{2}}-\frac{\partial^{2} u_{z}}{\partial y^{2}}-\frac{\partial^{2} u_{z}}{\partial z^{2}} \tag{9}
\end{equation*}
$$

As a matter of fact, Eq. (6) projected along z rewrites:
$-\frac{1}{P} \partial_{t}\left(\frac{\partial^{2} u_{z}}{\partial x^{2}}+\frac{\partial^{2} u_{z}}{\partial y^{2}}+\frac{\partial^{2} u_{z}}{\partial z^{2}}\right)=-R\left(\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}\right)-\Delta\left(\frac{\partial^{2} u_{z}}{\partial x^{2}}+\frac{\partial^{2} u_{z}}{\partial y^{2}}+\frac{\partial^{2} u_{z}}{\partial z^{2}}\right)$.
Figuring out the fact that the Laplacian of a scalar σ in cartesian coordinates is defined as:

$$
\begin{equation*}
\Delta \sigma:=\frac{\partial^{2} \sigma}{\partial x^{2}}+\frac{\partial^{2} \sigma}{\partial y^{2}}+\frac{\partial^{2} \sigma}{\partial z^{2}} \tag{11}
\end{equation*}
$$

we have:

$$
\begin{equation*}
-\frac{1}{P} \partial_{t}\left(\Delta u_{z}\right)=-R\left(\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}\right)-\Delta\left(\Delta u_{z}\right) \tag{12}
\end{equation*}
$$

Thus, for the moment, the linearized system we are dealing with reads:

$$
\begin{cases}-\frac{1}{P} \partial_{t}\left(\Delta u_{z}\right) & =-R\left(\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}\right)-\Delta\left(\Delta u_{z}\right) \tag{13}\\ \partial_{t} \theta-u_{z} & =\Delta \theta\end{cases}
$$

We understand that the z direction is somehow "spacial" in the system, thus we can suppose that for every planar cut of domain with normal vector parallel to \mathbf{e}_{z}, the solution behaves in (x, y) following some Fourier mode with wavenumber k_{x} in x and k_{y} in y. We shall note $|\mathbf{k}|^{2}:=k_{x}^{2}+k_{y}^{2}$. Thene, we suppose that:

$$
\begin{align*}
u_{z}=u_{z}(t, x, y, z) & =e^{\lambda t} e^{i\left(k_{x} x+k_{y} y\right)} f(z) \tag{14}\\
\theta=\theta(t, x, y, z) & =e^{\lambda t} e^{i\left(k_{x} x+k_{y} y\right)} g(z) \tag{15}
\end{align*}
$$

with $\lambda \in \mathbb{C}$ and f and g real functions to be found, describing the dependence of the solution of the z coordinate. We not plug this ansatz into the system (13). It is advisable to perform the computation term by term:

$$
\begin{align*}
\partial_{t}\left(\Delta u_{z}\right) & =\partial_{t}\left(\left(-|\mathbf{k}|^{2} f(z)+f^{\prime \prime}(z)\right) e^{\lambda t} e^{i\left(k_{x} x+k_{y} y\right)}\right) \tag{16}\\
& =\lambda\left(\frac{d^{2}}{d z^{2}}-|\mathbf{k}|^{2}\right)(f(z)) e^{\lambda t} e^{i\left(k_{x} x+k_{y} y\right)} \tag{17}
\end{align*}
$$

From now on, formulae like $\left(\frac{d^{2}}{d z^{2}}-|\mathbf{k}|^{2}\right)$ should be understood as linear operators acting on f.

$$
\begin{equation*}
\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}=-\left(k_{x}^{2}+k_{y}^{2}\right) e^{\lambda t} e^{i\left(k_{x} x+k_{y} y\right)} g(z)=-|\mathbf{k}|^{2} e^{\lambda t} e^{i\left(k_{x} x+k_{y} y\right)} g(z) \tag{18}
\end{equation*}
$$

-

$$
\begin{align*}
\Delta\left(\Delta u_{z}\right) & =\Delta\left(\left(-|\mathbf{k}|^{2} f(z)+f^{\prime \prime}(z)\right) e^{\lambda t} e^{i\left(k_{x} x+k_{y} y\right)}\right) \tag{19}\\
& \left.=\left(|\mathbf{k}|^{4}-2|\mathbf{k}|^{2} \frac{d^{2}}{d z^{2}}+\frac{d^{4}}{d z^{4}}\right)(f(z))\right) e^{\lambda t} e^{i\left(k_{x} x+k_{y} y\right)} \tag{20}\\
& \left.=\left(\frac{d^{2}}{d z^{2}}-|\mathbf{k}|^{2}\right)^{2}(f(z))\right) e^{\lambda t} e^{i\left(k_{x} x+k_{y} y\right)} . \tag{21}
\end{align*}
$$

\bullet

$$
\begin{equation*}
\partial_{t} \theta=\lambda e^{\lambda t} e^{i\left(k_{x} x+k_{y} y\right)} g(z) \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\Delta \theta=\left(\frac{d^{2}}{d z^{2}}-|\mathbf{k}|^{2}\right)(g(z)) e^{\lambda t} e^{i\left(k_{x} x+k_{y} y\right)} \tag{23}
\end{equation*}
$$

With all this in mind, we are ready to rewrite the equation from (13) under a new form. Keeping in mind that the term $e^{\lambda t} e^{i\left(k_{x} x+k_{y} y\right)}$ can be simplified everywhere (almost everywhere to be honest), the first equation becomes:

$$
\begin{equation*}
-\frac{\lambda}{P}\left(\frac{d^{2}}{d z^{2}}-|\mathbf{k}|^{2}\right) f(z)=R|\mathbf{k}|^{2} g(z)-\left(\frac{d^{2}}{d z^{2}}-|\mathbf{k}|^{2}\right)^{2} f(z) \tag{24}
\end{equation*}
$$

which can be easily rewritten under the form:

$$
\begin{equation*}
\left(\frac{d^{2}}{d z^{2}}-|\mathbf{k}|^{2}\right)\left(\frac{d^{2}}{d z^{2}}-|\mathbf{k}|^{2}-\frac{\lambda}{P}\right) f(z)=R|\mathbf{k}|^{2} g(z) . \tag{25}
\end{equation*}
$$

We are almost done: the second equation has become:

$$
\begin{equation*}
\left(\frac{d^{2}}{d z^{2}}-|\mathbf{k}|^{2}-\lambda\right) g(z)=-f(z) \tag{26}
\end{equation*}
$$

We want to eliminate $g(z)$ from (25) in order to have an equation only on $f(z)$. By multiplying (25) and using (26), we obtain:

$$
\begin{equation*}
\left(\frac{d^{2}}{d z^{2}}-|\mathbf{k}|^{2}-\lambda\right)\left(\frac{d^{2}}{d z^{2}}-|\mathbf{k}|^{2}\right)\left(\frac{d^{2}}{d z^{2}}-|\mathbf{k}|^{2}-\frac{\lambda}{P}\right) f(z)=-R|\mathbf{k}|^{2} f(z) \tag{27}
\end{equation*}
$$

Quod erat demonstrandum.

Thenembellots

[^0]: *thomas.bellotti@polytechnique.edu

