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The starting point is the dimensionless form of the problem, which reads:
1
P (∂tu + u · ∇u) = −∇ω +Rθez + ∆u

∂tθ − uz + u · ∇θ = ∆θ

∇ · u = 0,

(1)

where P and R are dimensionless parameters given by:

P =
ν

χ
R =

αg∆Th3

νχ
, (2)

and ω is the dimensionless pressure variable along with ez the unit vector along
z and uz := u · ez. We assume |u| � 1 and θ � 1 (infinitesimal), so that we
can linearize the equations, meanining that the non-linear terms (i.e. u · ∇u
and u · ∇θ) are supposed to be negligible. This yields:

1
P ∂tu = −∇ω +Rθez + ∆u

∂tθ − uz = ∆θ

∇ · u = 0.

(3)

We remember that for a vector field v = (vx, vy, vz) written with respect to the
cartesian system (that is not true for cylindrical and other systems of coordi-
nates), the curl is given by:

∇×v =

∣∣∣∣∣∣
ex ey ez
∂
∂x

∂
∂y

∂
∂z

vx vy vz

∣∣∣∣∣∣ =

(
∂vz
∂y
− ∂vy

∂z

)
ex+

(
∂vx
∂z
− ∂vz

∂x

)
ey+

(
∂vy
∂x
− ∂vx

∂y

)
ez

(4)
We take the curl of the first equation of (3), having (we will eventually develop
some more terms):

1

P
∂t (∇× u) = −∇× (∇ω)︸ ︷︷ ︸

=0

+R

(
∂θ

∂y
ey −

∂θ

∂x
ey

)
+ ∆ (∇× u) , (5)

where we have used the fact that the curl of the gradient is always vanishing.
Taking the curl again for Eq. (5), gives:

1

P
∂t (∇×∇× u) = R

(
∂2θ

∂z∂y
ey −

∂2θ

∂y2
ez +

∂2θ

∂z∂x
ex −

∂2θ

∂x2
ez

)
+∆ (∇×∇× u) .

(6)
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We now develop the term ∇×∇× u using the rule for the computation of the
curl (twice) that we have seen so far. Instead of writing the whole result, we
directly projet it on the z direction:

(∇×∇× u) · ez =
∂2ux
∂x∂z

+
∂2uy
∂y∂z

− ∂2uz
∂x2

− ∂2uz
∂y2

. (7)

Before plugging back (7) in (6), we use the incompressibility constraint from (3)
to simplify the expression. The constraint reads, in cartesian coordinates:

0 =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

→ ∂2uy
∂y∂z

= − ∂
2ux

∂x∂z
− ∂2uz

∂z2
. (8)

We are left with:

(∇×∇× u) · ez = −∂
2uz
∂x2

− ∂2uz
∂y2

− ∂2uz
∂z2

. (9)

As a matter of fact, Eq. (6) projected along z rewrites:

− 1

P
∂t

(
∂2uz
∂x2

+
∂2uz
∂y2

+
∂2uz
∂z2

)
= −R

(
∂2θ

∂x2
+
∂2θ

∂y2

)
−∆

(
∂2uz
∂x2

+
∂2uz
∂y2

+
∂2uz
∂z2

)
.

(10)
Figuring out the fact that the Laplacian of a scalar σ in cartesian coordinates
is defined as:

∆σ :=
∂2σ

∂x2
+
∂2σ

∂y2
+
∂2σ

∂z2
, (11)

we have:

− 1

P
∂t (∆uz) = −R

(
∂2θ

∂x2
+
∂2θ

∂y2

)
−∆ (∆uz) . (12)

Thus, for the moment, the linearized system we are dealing with reads:{
− 1
P ∂t (∆uz) = −R

(
∂2θ
∂x2 + ∂2θ

∂y2

)
−∆ (∆uz)

∂tθ − uz = ∆θ.
(13)

We understand that the z direction is somehow “spacial” in the system,
thus we can suppose that for every planar cut of domain with normal vector
parallel to ez, the solution behaves in (x, y) following some Fourier mode with
wavenumber kx in x and ky in y. We shall note |k|2 := k2x + k2y. Thene, we
suppose that:

uz = uz(t, x, y, z) = eλtei(kxx+kyy)f(z) (14)

θ = θ(t, x, y, z) = eλtei(kxx+kyy)g(z), (15)

with λ ∈ C and f and g real functions to be found, describing the dependence
of the solution of the z coordinate. We not plug this ansatz into the system
(13). It is advisable to perform the computation term by term:

•

∂t(∆uz) = ∂t

((
−|k|2f(z) + f ′′(z)

)
eλtei(kxx+kyy)

)
(16)

= λ

(
d2

dz2
− |k|2

)
(f(z)) eλtei(kxx+kyy). (17)
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From now on, formulae like
(
d2

dz2 − |k|
2
)

should be understood as linear

operators acting on f .

•

∂2θ

∂x2
+
∂2θ

∂y2
= −(k2x + k2y)eλtei(kxx+kyy)g(z) = −|k|2eλtei(kxx+kyy)g(z).

(18)

•

∆(∆uz) = ∆
((
−|k|2f(z) + f ′′(z)

)
eλtei(kxx+kyy)

)
(19)

=

(
|k|4 − 2|k|2 d

2

dz2
+

d4

dz4

)
(f(z)))eλtei(kxx+kyy) (20)

=

(
d2

dz2
− |k|2

)2

(f(z)))eλtei(kxx+kyy). (21)

•
∂tθ = λeλtei(kxx+kyy)g(z). (22)

•
∆θ =

(
d2

dz2
− |k|2

)
(g(z)) eλtei(kxx+kyy) (23)

With all this in mind, we are ready to rewrite the equation from (13) under
a new form. Keeping in mind that the term eλtei(kxx+kyy) can be simplified
everywhere (almost everywhere to be honest), the first equation becomes:

− λ
P

(
d2

dz2
− |k|2

)
f(z) = R|k|2g(z)−

(
d2

dz2
− |k|2

)2

f(z), (24)

which can be easily rewritten under the form:(
d2

dz2
− |k|2

)(
d2

dz2
− |k|2 − λ

P

)
f(z) = R|k|2g(z). (25)

We are almost done: the second equation has become:(
d2

dz2
− |k|2 − λ

)
g(z) = −f(z). (26)

We want to eliminate g(z) from (25) in order to have an equation only on f(z).
By multiplying (25) and using (26), we obtain:(

d2

dz2
− |k|2 − λ

)(
d2

dz2
− |k|2

)(
d2

dz2
− |k|2 − λ

P

)
f(z) = −R|k|2f(z), (27)

Quod erat demonstrandum.

3



4


