
APC Project: SimpleQuadTree

APC Project: SimpleQuadTree

Thomas Bellotti - thomas.bellotti@polytechnique.edu

24 - 05 - 2019

APC Project: SimpleQuadTree

1 Introduction
Aims of the project
Quadtrees
Some terminology

2 Models and tools to understand what follows
Level-set theory
Gaussian quadrature
Rgb colors and their “distance”

3 Implementation
Classes
Parallelization of the quadrature

4 Tests and results
Construction of highly adaptive grids
Numerical quadrature
Image compression

5 Conclusions and perspectives

APC Project: SimpleQuadTree

Introduction

Introduction

APC Project: SimpleQuadTree

Introduction

Aims of the project

Aims of the project

Original target:

Aim 1

Construct highly adaptive Cartesian non-uniform meshes on which we can
perform numerical quadrature and eventually implement numerical solvers
for PDEs, mainly based on the Finite Volume method.

After some work...

Aim 2

Implement a simple method to compress digital images, which recognizes large
areas of almost uniform color. Could be eventually used also for shape recognition.

These two objectives may seems quite far one from the other but actually they can
be linked by... Quadtrees.

APC Project: SimpleQuadTree

Introduction

Aims of the project

Aims of the project

Original target:

Aim 1

Construct highly adaptive Cartesian non-uniform meshes on which we can
perform numerical quadrature and eventually implement numerical solvers
for PDEs, mainly based on the Finite Volume method.

After some work...

Aim 2

Implement a simple method to compress digital images, which recognizes large
areas of almost uniform color. Could be eventually used also for shape recognition.

These two objectives may seems quite far one from the other but actually they can
be linked by... Quadtrees.

APC Project: SimpleQuadTree

Introduction

Aims of the project

Aims of the project

Original target:

Aim 1

Construct highly adaptive Cartesian non-uniform meshes on which we can
perform numerical quadrature and eventually implement numerical solvers
for PDEs, mainly based on the Finite Volume method.

After some work...

Aim 2

Implement a simple method to compress digital images, which recognizes large
areas of almost uniform color. Could be eventually used also for shape recognition.

These two objectives may seems quite far one from the other but actually they can
be linked by... Quadtrees.

APC Project: SimpleQuadTree

Introduction

Aims of the project

Aims of the project

Original target:

Aim 1

Construct highly adaptive Cartesian non-uniform meshes on which we can
perform numerical quadrature and eventually implement numerical solvers
for PDEs, mainly based on the Finite Volume method.

After some work...

Aim 2

Implement a simple method to compress digital images, which recognizes large
areas of almost uniform color. Could be eventually used also for shape recognition.

These two objectives may seems quite far one from the other but actually they can
be linked by... Quadtrees.

APC Project: SimpleQuadTree

Introduction

Quadtrees

What is a quadtree

Basically just an unbalanced tree structure allowing four children. Generalized
in 3D by the octrees. It has a clear geometrical counterpart in terms of AMR
(Adaptive Mesh Refinement), where they are built by recursively splitting
larger cells.

Image from: T. Bellotti, M. Theillard - A coupled level-set and reference map method for interface

representation with applications to two-phase flows simulation - Volume 392, 2019, J. Comput. Phys.

APC Project: SimpleQuadTree

Introduction

Quadtrees

What is a quadtree

Basically just an unbalanced tree structure allowing four children. Generalized
in 3D by the octrees.

It has a clear geometrical counterpart in terms of AMR
(Adaptive Mesh Refinement), where they are built by recursively splitting
larger cells.

Image from: T. Bellotti, M. Theillard - A coupled level-set and reference map method for interface

representation with applications to two-phase flows simulation - Volume 392, 2019, J. Comput. Phys.

APC Project: SimpleQuadTree

Introduction

Quadtrees

What is a quadtree

Basically just an unbalanced tree structure allowing four children. Generalized
in 3D by the octrees. It has a clear geometrical counterpart in terms of AMR
(Adaptive Mesh Refinement), where they are built by recursively splitting
larger cells.

Image from: T. Bellotti, M. Theillard - A coupled level-set and reference map method for interface

representation with applications to two-phase flows simulation - Volume 392, 2019, J. Comput. Phys.

APC Project: SimpleQuadTree

Introduction

Some terminology

Some terminology

Leaf : cell without children.

Level (of a cell): number of times the largest cell has been split to generate
the current cell.

Maximum level (maxlevel): maximum number of allowed splits.

Minimum level (minlevel): minimum number of necessary splits.

APC Project: SimpleQuadTree

Introduction

Some terminology

Some terminology

Leaf : cell without children.

Level (of a cell): number of times the largest cell has been split to generate
the current cell.

Maximum level (maxlevel): maximum number of allowed splits.

Minimum level (minlevel): minimum number of necessary splits.

APC Project: SimpleQuadTree

Introduction

Some terminology

Some terminology

Leaf : cell without children.

Level (of a cell): number of times the largest cell has been split to generate
the current cell.

Maximum level (maxlevel): maximum number of allowed splits.

Minimum level (minlevel): minimum number of necessary splits.

APC Project: SimpleQuadTree

Introduction

Some terminology

Some terminology

Leaf : cell without children.

Level (of a cell): number of times the largest cell has been split to generate
the current cell.

Maximum level (maxlevel): maximum number of allowed splits.

Minimum level (minlevel): minimum number of necessary splits.

APC Project: SimpleQuadTree

Models and tools to understand what follows

Models and tools to understand what follows

APC Project: SimpleQuadTree

Models and tools to understand what follows

Level-set theory

Level-set theory

In this work, we only see it as a strategy to build beautiful and meaningful
adaptive meshes (there is more than this).

Image from: T. Bellotti, M. Theillard - A coupled level-set and reference map method for interface

representation with applications to two-phase flows simulation - Volume 392, 2019, J. Comput. Phys.

Γ = {x ∈ Ω : φ(x) = 0} ,

Ω− = {x ∈ Ω : φ(x) < 0} ,

Ω+ = {x ∈ Ω : φ(x) > 0} .

APC Project: SimpleQuadTree

Models and tools to understand what follows

Level-set theory

Level-set theory

In this work, we only see it as a strategy to build beautiful and meaningful
adaptive meshes (there is more than this).

Image from: T. Bellotti, M. Theillard - A coupled level-set and reference map method for interface

representation with applications to two-phase flows simulation - Volume 392, 2019, J. Comput. Phys.

Γ = {x ∈ Ω : φ(x) = 0} ,

Ω− = {x ∈ Ω : φ(x) < 0} ,

Ω+ = {x ∈ Ω : φ(x) > 0} .

APC Project: SimpleQuadTree

Models and tools to understand what follows

Level-set theory

Level-set theory

In this work, we only see it as a strategy to build beautiful and meaningful
adaptive meshes (there is more than this).

Image from: T. Bellotti, M. Theillard - A coupled level-set and reference map method for interface

representation with applications to two-phase flows simulation - Volume 392, 2019, J. Comput. Phys.

Γ = {x ∈ Ω : φ(x) = 0} ,

Ω− = {x ∈ Ω : φ(x) < 0} ,

Ω+ = {x ∈ Ω : φ(x) > 0} .

APC Project: SimpleQuadTree

Models and tools to understand what follows

Level-set theory

Level-set theory

It is probably the easiest way of representing an interface in a computationally
efficient manner.

Example

In 2D, a circle centered in (x0, y0) with radius R can be represented by:

φ(x, y) =
√

(x− x0)2 + (y − y0)2 −R.

Notice that, given Γ, the level-set is not unique, but this is not our problem now.
It is unique if we assume (and we will do so) that φ(x, y) is nothing but the
signed distance of (x, y) from Γ.

split C if : |φ(xC)| ≤ Lip(φ) · diag(C) and level(C) ≤ maxlevel,

This naively means that we split a cell wheather its diagonal length exceeds the
distance from the interface Γ represented by the level-set φ.

APC Project: SimpleQuadTree

Models and tools to understand what follows

Level-set theory

Level-set theory

It is probably the easiest way of representing an interface in a computationally
efficient manner.

Example

In 2D, a circle centered in (x0, y0) with radius R can be represented by:

φ(x, y) =
√

(x− x0)2 + (y − y0)2 −R.

Notice that, given Γ, the level-set is not unique, but this is not our problem now.
It is unique if we assume (and we will do so) that φ(x, y) is nothing but the
signed distance of (x, y) from Γ.

split C if : |φ(xC)| ≤ Lip(φ) · diag(C) and level(C) ≤ maxlevel,

This naively means that we split a cell wheather its diagonal length exceeds the
distance from the interface Γ represented by the level-set φ.

APC Project: SimpleQuadTree

Models and tools to understand what follows

Level-set theory

Level-set theory

It is probably the easiest way of representing an interface in a computationally
efficient manner.

Example

In 2D, a circle centered in (x0, y0) with radius R can be represented by:

φ(x, y) =
√

(x− x0)2 + (y − y0)2 −R.

Notice that, given Γ, the level-set is not unique, but this is not our problem now.
It is unique if we assume (and we will do so) that φ(x, y) is nothing but the
signed distance of (x, y) from Γ.

split C if : |φ(xC)| ≤ Lip(φ) · diag(C) and level(C) ≤ maxlevel,

This naively means that we split a cell wheather its diagonal length exceeds the
distance from the interface Γ represented by the level-set φ.

APC Project: SimpleQuadTree

Models and tools to understand what follows

Level-set theory

Level-set theory

It is probably the easiest way of representing an interface in a computationally
efficient manner.

Example

In 2D, a circle centered in (x0, y0) with radius R can be represented by:

φ(x, y) =
√

(x− x0)2 + (y − y0)2 −R.

Notice that, given Γ, the level-set is not unique, but this is not our problem now.
It is unique if we assume (and we will do so) that φ(x, y) is nothing but the
signed distance of (x, y) from Γ.

split C if : |φ(xC)| ≤ Lip(φ) · diag(C) and level(C) ≤ maxlevel,

This naively means that we split a cell wheather its diagonal length exceeds the
distance from the interface Γ represented by the level-set φ.

APC Project: SimpleQuadTree

Models and tools to understand what follows

Level-set theory

And the result can be. . . Very nice!

APC Project: SimpleQuadTree

Models and tools to understand what follows

Gaussian quadrature

Gaussian quadrature

Considering a stardard quadrilateral domain Ω = [−1, 1]2 and given a possibly
smooth function f : Ω→ R, we want to compute:∫

Ω
f(x, y)dxdy.

This can be done by quadrature formulae, based on simple evaluation of the
function f at certain points of the domain. For our purpose, we use two choices:

1 “Naive” formula, with only one function evaluation.∫
Ω
f(x, y)dxdy ' |Ω|f(0, 0) = 4f(0, 0)

2 3rd order Gaussian formula, with nine function evaluations (plus extra
computations to adapt to a generic domain).∫

Ω
f(x, y)dxdy '

5

81

[
5f

(
−
√

3

5
,−
√

3

5

)
+ 8f

(
0,−

√
3

5

)
+ 5f

(√
3

5
,−
√

3

5

)]

+
8

81

[
5f

(
−
√

3

5
, 0

)
+ 8f (0, 0) + 5f

(
0,

√
3

5

)]

+
5

81

[
5f

(
−
√

3

5
,

√
3

5

)
+ 8f

(
0,

√
3

5

)
+ 5f

(√
3

5
,

√
3

5

)]
.

APC Project: SimpleQuadTree

Models and tools to understand what follows

Gaussian quadrature

Gaussian quadrature

Considering a stardard quadrilateral domain Ω = [−1, 1]2 and given a possibly
smooth function f : Ω→ R, we want to compute:∫

Ω
f(x, y)dxdy.

This can be done by quadrature formulae, based on simple evaluation of the
function f at certain points of the domain. For our purpose, we use two choices:

1 “Naive” formula, with only one function evaluation.∫
Ω
f(x, y)dxdy ' |Ω|f(0, 0) = 4f(0, 0)

2 3rd order Gaussian formula, with nine function evaluations (plus extra
computations to adapt to a generic domain).∫

Ω
f(x, y)dxdy '

5

81

[
5f

(
−
√

3

5
,−
√

3

5

)
+ 8f

(
0,−

√
3

5

)
+ 5f

(√
3

5
,−
√

3

5

)]

+
8

81

[
5f

(
−
√

3

5
, 0

)
+ 8f (0, 0) + 5f

(
0,

√
3

5

)]

+
5

81

[
5f

(
−
√

3

5
,

√
3

5

)
+ 8f

(
0,

√
3

5

)
+ 5f

(√
3

5
,

√
3

5

)]
.

APC Project: SimpleQuadTree

Models and tools to understand what follows

Gaussian quadrature

Gaussian quadrature

Considering a stardard quadrilateral domain Ω = [−1, 1]2 and given a possibly
smooth function f : Ω→ R, we want to compute:∫

Ω
f(x, y)dxdy.

This can be done by quadrature formulae, based on simple evaluation of the
function f at certain points of the domain. For our purpose, we use two choices:

1 “Naive” formula, with only one function evaluation.∫
Ω
f(x, y)dxdy ' |Ω|f(0, 0) = 4f(0, 0)

2 3rd order Gaussian formula, with nine function evaluations (plus extra
computations to adapt to a generic domain).∫

Ω
f(x, y)dxdy '

5

81

[
5f

(
−
√

3

5
,−
√

3

5

)
+ 8f

(
0,−

√
3

5

)
+ 5f

(√
3

5
,−
√

3

5

)]

+
8

81

[
5f

(
−
√

3

5
, 0

)
+ 8f (0, 0) + 5f

(
0,

√
3

5

)]

+
5

81

[
5f

(
−
√

3

5
,

√
3

5

)
+ 8f

(
0,

√
3

5

)
+ 5f

(√
3

5
,

√
3

5

)]
.

APC Project: SimpleQuadTree

Models and tools to understand what follows

Gaussian quadrature

Gaussian quadrature

Considering a stardard quadrilateral domain Ω = [−1, 1]2 and given a possibly
smooth function f : Ω→ R, we want to compute:∫

Ω
f(x, y)dxdy.

This can be done by quadrature formulae, based on simple evaluation of the
function f at certain points of the domain. For our purpose, we use two choices:

1 “Naive” formula, with only one function evaluation.∫
Ω
f(x, y)dxdy ' |Ω|f(0, 0) = 4f(0, 0)

2 3rd order Gaussian formula, with nine function evaluations (plus extra
computations to adapt to a generic domain).∫

Ω
f(x, y)dxdy '

5

81

[
5f

(
−
√

3

5
,−
√

3

5

)
+ 8f

(
0,−

√
3

5

)
+ 5f

(√
3

5
,−
√

3

5

)]

+
8

81

[
5f

(
−
√

3

5
, 0

)
+ 8f (0, 0) + 5f

(
0,

√
3

5

)]

+
5

81

[
5f

(
−
√

3

5
,

√
3

5

)
+ 8f

(
0,

√
3

5

)
+ 5f

(√
3

5
,

√
3

5

)]
.

APC Project: SimpleQuadTree

Models and tools to understand what follows

Rgb colors and their “distance”

Rgb colors and their “distance”

It is probably the simplest way of representing colors, as a combination of three
components, red, green and blue. Thus, a color C is nothing else than a triplet:

C = [Cred, Cgreen, Cblue] ,

where Cred, Cgreen, Cblue ∈ {0, . . . , 255}. In this way, we can represent 16,777,216
different tones. For our purpose, it is useful to define the notion of distance
between two colors, which can be defined in many ways. In our case, we use the
simple “corrected” formula:

d(C1, C2) =

√
2
(
C1

red − C
2
red

)2
+ 4

(
C1

green − C2
green

)2
+ 3

(
C1

blue − C
2
blue

)2
.

The mean color between
{
C1, . . . , CN

}
is defined by:

C
({
C1, . . . , CN

})
=

[
1

N

N∑
n=1

Cnred,
1

N

N∑
n=1

Cngreen,
1

N

N∑
n=1

Cnblue

]
,

and a sort of standard deviation as:

σ
({
C1, . . . , CN

})
=

1

N

√√√√ N∑
n=1

d(Cn, C)2 ∈ [0, 765].

APC Project: SimpleQuadTree

Models and tools to understand what follows

Rgb colors and their “distance”

Rgb colors and their “distance”

It is probably the simplest way of representing colors, as a combination of three
components, red, green and blue. Thus, a color C is nothing else than a triplet:

C = [Cred, Cgreen, Cblue] ,

where Cred, Cgreen, Cblue ∈ {0, . . . , 255}. In this way, we can represent 16,777,216
different tones.

For our purpose, it is useful to define the notion of distance
between two colors, which can be defined in many ways. In our case, we use the
simple “corrected” formula:

d(C1, C2) =

√
2
(
C1

red − C
2
red

)2
+ 4

(
C1

green − C2
green

)2
+ 3

(
C1

blue − C
2
blue

)2
.

The mean color between
{
C1, . . . , CN

}
is defined by:

C
({
C1, . . . , CN

})
=

[
1

N

N∑
n=1

Cnred,
1

N

N∑
n=1

Cngreen,
1

N

N∑
n=1

Cnblue

]
,

and a sort of standard deviation as:

σ
({
C1, . . . , CN

})
=

1

N

√√√√ N∑
n=1

d(Cn, C)2 ∈ [0, 765].

APC Project: SimpleQuadTree

Models and tools to understand what follows

Rgb colors and their “distance”

Rgb colors and their “distance”

It is probably the simplest way of representing colors, as a combination of three
components, red, green and blue. Thus, a color C is nothing else than a triplet:

C = [Cred, Cgreen, Cblue] ,

where Cred, Cgreen, Cblue ∈ {0, . . . , 255}. In this way, we can represent 16,777,216
different tones. For our purpose, it is useful to define the notion of distance
between two colors, which can be defined in many ways. In our case, we use the
simple “corrected” formula:

d(C1, C2) =

√
2
(
C1

red − C
2
red

)2
+ 4

(
C1

green − C2
green

)2
+ 3

(
C1

blue − C
2
blue

)2
.

The mean color between
{
C1, . . . , CN

}
is defined by:

C
({
C1, . . . , CN

})
=

[
1

N

N∑
n=1

Cnred,
1

N

N∑
n=1

Cngreen,
1

N

N∑
n=1

Cnblue

]
,

and a sort of standard deviation as:

σ
({
C1, . . . , CN

})
=

1

N

√√√√ N∑
n=1

d(Cn, C)2 ∈ [0, 765].

APC Project: SimpleQuadTree

Models and tools to understand what follows

Rgb colors and their “distance”

Rgb colors and their “distance”

It is probably the simplest way of representing colors, as a combination of three
components, red, green and blue. Thus, a color C is nothing else than a triplet:

C = [Cred, Cgreen, Cblue] ,

where Cred, Cgreen, Cblue ∈ {0, . . . , 255}. In this way, we can represent 16,777,216
different tones. For our purpose, it is useful to define the notion of distance
between two colors, which can be defined in many ways. In our case, we use the
simple “corrected” formula:

d(C1, C2) =

√
2
(
C1

red − C
2
red

)2
+ 4

(
C1

green − C2
green

)2
+ 3

(
C1

blue − C
2
blue

)2
.

The mean color between
{
C1, . . . , CN

}
is defined by:

C
({
C1, . . . , CN

})
=

[
1

N

N∑
n=1

Cnred,
1

N

N∑
n=1

Cngreen,
1

N

N∑
n=1

Cnblue

]
,

and a sort of standard deviation as:

σ
({
C1, . . . , CN

})
=

1

N

√√√√ N∑
n=1

d(Cn, C)2 ∈ [0, 765].

APC Project: SimpleQuadTree

Models and tools to understand what follows

Rgb colors and their “distance”

Rgb colors and their “distance”

It is probably the simplest way of representing colors, as a combination of three
components, red, green and blue. Thus, a color C is nothing else than a triplet:

C = [Cred, Cgreen, Cblue] ,

where Cred, Cgreen, Cblue ∈ {0, . . . , 255}. In this way, we can represent 16,777,216
different tones. For our purpose, it is useful to define the notion of distance
between two colors, which can be defined in many ways. In our case, we use the
simple “corrected” formula:

d(C1, C2) =

√
2
(
C1

red − C
2
red

)2
+ 4

(
C1

green − C2
green

)2
+ 3

(
C1

blue − C
2
blue

)2
.

The mean color between
{
C1, . . . , CN

}
is defined by:

C
({
C1, . . . , CN

})
=

[
1

N

N∑
n=1

Cnred,
1

N

N∑
n=1

Cngreen,
1

N

N∑
n=1

Cnblue

]
,

and a sort of standard deviation as:

σ
({
C1, . . . , CN

})
=

1

N

√√√√ N∑
n=1

d(Cn, C)2 ∈ [0, 765].

APC Project: SimpleQuadTree

Models and tools to understand what follows

Rgb colors and their “distance”

How to compress an image?

Let P be a preleave whose children are L(P). We define a tolerance 0 < ε� 1.
Then:

merge P if : σ (L(P)) ≤ 765 · ε.

In the case of merging, we consider:

CP = C (L(P)) .

APC Project: SimpleQuadTree

Models and tools to understand what follows

Rgb colors and their “distance”

How to compress an image?

Let P be a preleave whose children are L(P). We define a tolerance 0 < ε� 1.
Then:

merge P if : σ (L(P)) ≤ 765 · ε.

In the case of merging, we consider:

CP = C (L(P)) .

APC Project: SimpleQuadTree

Models and tools to understand what follows

Rgb colors and their “distance”

How to compress an image?

Let P be a preleave whose children are L(P). We define a tolerance 0 < ε� 1.
Then:

merge P if : σ (L(P)) ≤ 765 · ε.

In the case of merging, we consider:

CP = C (L(P)) .

APC Project: SimpleQuadTree

Implementation

Implementation

APC Project: SimpleQuadTree

Implementation

Classes

The AbstractCell class

AbstractCell<T>

const Point<T> base_point

const T dx

const T dx

const unsigned char level

std::shared_ptr<AbstractCell> l_l

std::shared_ptr<AbstractCell> l_r

std::shared_ptr<AbstractCell> u_l

std::shared_ptr<AbstractCell> u_r

+ AbstractCell(Point<T>, T, T, unsigned char)

+ virtual ~AbstractCell()

+ Point<T> getBasePoint() const

+ unsigned char getLevel() const

+ bool isLeaf() const

+ Point<T> getCenter() const

+ T getDx() const

+ T getDy() const

+ virtual void splitCell() = 0

+ virtual void mergeCell()

+ void refineCell(const RefinementCriterion<T> & , const unsigned char)

+ void simplifyCell(const RefinementCriterion<T> &, const unsigned char)

+ void updateCell(const RefinementCriterion<T> &, const unsigned char, const unsigned char)

+ std::vector<std::shared_ptr<AbstractCell<T>>> getChildren() const

+ std::vector<Point<T>> getVertices() const

+ void getLeaves(std::vector<std::shared_ptr<AbstractCell<T>>> &)

+ void getPreLeaves(std::vector<std::shared_ptr<AbstractCell<T>>> &) const

+ std::string tikzDot() const

std::string tikzSquare(const RGBColor color, const bool) const

Basic features of a cell in a quadtree.

APC Project: SimpleQuadTree

Implementation

Classes

The AbstractCell class

AbstractCell<T>

const Point<T> base_point

const T dx

const T dx

const unsigned char level

std::shared_ptr<AbstractCell> l_l

std::shared_ptr<AbstractCell> l_r

std::shared_ptr<AbstractCell> u_l

std::shared_ptr<AbstractCell> u_r

+ AbstractCell(Point<T>, T, T, unsigned char)

+ virtual ~AbstractCell()

+ Point<T> getBasePoint() const

+ unsigned char getLevel() const

+ bool isLeaf() const

+ Point<T> getCenter() const

+ T getDx() const

+ T getDy() const

+ virtual void splitCell() = 0

+ virtual void mergeCell()

+ void refineCell(const RefinementCriterion<T> & , const unsigned char)

+ void simplifyCell(const RefinementCriterion<T> &, const unsigned char)

+ void updateCell(const RefinementCriterion<T> &, const unsigned char, const unsigned char)

+ std::vector<std::shared_ptr<AbstractCell<T>>> getChildren() const

+ std::vector<Point<T>> getVertices() const

+ void getLeaves(std::vector<std::shared_ptr<AbstractCell<T>>> &)

+ void getPreLeaves(std::vector<std::shared_ptr<AbstractCell<T>>> &) const

+ std::string tikzDot() const

std::string tikzSquare(const RGBColor color, const bool) const

Basic features of a cell in a quadtree.

APC Project: SimpleQuadTree

Implementation

Classes

The Cell class inheriting from AbstractCell

+ Cell(Point<T>, T, T, unsigned char)

+ virtual ~Cell()

+ T getDiagonal() const

+ T cellSurface() const

+ virtual void splitCell() override

+ T zeroOrderIntegration(const std::function<T(Point<T>)> &) const

+ T thirdOrderGaussianIntegration(const std::function<T(Point<T>)> &) const

Cell<T> : public AbstractCell<T>

Used to build the quadtree on which we construct a mesh for performing
quadratures. These functions are not necessary to do image compression.

APC Project: SimpleQuadTree

Implementation

Classes

The Cell class inheriting from AbstractCell

+ Cell(Point<T>, T, T, unsigned char)

+ virtual ~Cell()

+ T getDiagonal() const

+ T cellSurface() const

+ virtual void splitCell() override

+ T zeroOrderIntegration(const std::function<T(Point<T>)> &) const

+ T thirdOrderGaussianIntegration(const std::function<T(Point<T>)> &) const

Cell<T> : public AbstractCell<T>

Used to build the quadtree on which we construct a mesh for performing
quadratures. These functions are not necessary to do image compression.

APC Project: SimpleQuadTree

Implementation

Classes

The Pixel class inheriting from AbstractCell

The “generalized” pixel is basically an AbstractCell...

RGBColor field

+ Pixel(Point<T>, T, T, unsigned char)

+ Pixel(Point<T>, T, T, unsigned char, const RGBColor &)

+ virtual ~Pixel()

+ void setField(const RGBColor &)

+ RGBColor getField() const

+ virtual void splitCell() override

+ RGBColor meanField()

+ double stdDevField()

+ virtual void mergeCell() override

Pixel<T> : public AbstractCell<T>

plus a color and functions to compute color means and standard deviations. We
have to be careful to cast pointers when we need to extract information from the
Pixel.

APC Project: SimpleQuadTree

Implementation

Classes

The Pixel class inheriting from AbstractCell

The “generalized” pixel is basically an AbstractCell...

RGBColor field

+ Pixel(Point<T>, T, T, unsigned char)

+ Pixel(Point<T>, T, T, unsigned char, const RGBColor &)

+ virtual ~Pixel()

+ void setField(const RGBColor &)

+ RGBColor getField() const

+ virtual void splitCell() override

+ RGBColor meanField()

+ double stdDevField()

+ virtual void mergeCell() override

Pixel<T> : public AbstractCell<T>

plus a color and functions to compute color means and standard deviations. We
have to be careful to cast pointers when we need to extract information from the
Pixel.

APC Project: SimpleQuadTree

Implementation

Classes

The QuadTree class

This class is mostly a wrapper of the Cell class, but it is what the user interacts
with.

QuadTree <T>

const T x_size

const T y_size

const unsigned char min_level

const unsigned char max_level

std::shared_ptr<Cell<T>> parent_cell

std::vector<std::shared_ptr<Cell<T>>> getLeaves() const

+ QuadTree(Point<T>, T, T, unsigned char, unsigned char)

+ virtual ~QuadTree()

+ T simpleIntegration(std::function<T(Point<T>)> &) const

+ unsigned getMinLevel() const

+ unsigned getMaxLevel() const

+ size_t numberOfLeaves() const

+ void buildUniform()

+ void buildUniform(unsigned)

+ void clear()

+ void updateWithLevelSet(const LipschitzFunction<T> &)

+ void updateQuadTree(const RefinementCriterion<T> &)

+ void updateQuadTree(const RefinementCriterion<T> &, const unsigned char, const unsigned char)

+ std::vector<Point<T>> getCenters()

+ void exportCentersTikz(const std::string &) const

+ void exportMeshTikz(const std::string &, bool) const

+ T simpleIntegration(const std::function<T(Point<T>)> &) const

+ T thirdOrderGaussianIntegration(const std::function<T(Point<T>)> &) const

+ T simpleIntegration(const std::function<T(std::shared_ptr<Cell<T>>)> &) const

APC Project: SimpleQuadTree

Implementation

Classes

The QuadTree class

This class is mostly a wrapper of the Cell class, but it is what the user interacts
with.

QuadTree <T>

const T x_size

const T y_size

const unsigned char min_level

const unsigned char max_level

std::shared_ptr<Cell<T>> parent_cell

std::vector<std::shared_ptr<Cell<T>>> getLeaves() const

+ QuadTree(Point<T>, T, T, unsigned char, unsigned char)

+ virtual ~QuadTree()

+ T simpleIntegration(std::function<T(Point<T>)> &) const

+ unsigned getMinLevel() const

+ unsigned getMaxLevel() const

+ size_t numberOfLeaves() const

+ void buildUniform()

+ void buildUniform(unsigned)

+ void clear()

+ void updateWithLevelSet(const LipschitzFunction<T> &)

+ void updateQuadTree(const RefinementCriterion<T> &)

+ void updateQuadTree(const RefinementCriterion<T> &, const unsigned char, const unsigned char)

+ std::vector<Point<T>> getCenters()

+ void exportCentersTikz(const std::string &) const

+ void exportMeshTikz(const std::string &, bool) const

+ T simpleIntegration(const std::function<T(Point<T>)> &) const

+ T thirdOrderGaussianIntegration(const std::function<T(Point<T>)> &) const

+ T simpleIntegration(const std::function<T(std::shared_ptr<Cell<T>>)> &) const

APC Project: SimpleQuadTree

Implementation

Classes

The Image class

This class is mostly a wrapper of the Pixel class. We distinguished it from the
QuadTree class (it does not inherit from it) because there are many features that
they do not share.

Image<T>

T x_size

T y_size

unsigned char min_level

unsigned char max_level

std::shared_ptr<Pixel<T>> parent_cell

+ Image()

+ Image(T, T, unsigned char, unsigned char)

+ ~Image()

+ unsigned int getMinLevel() const

+ unsigned int getMaxLevel() const

+ size_t numberOfPixels() const

+ void clear()

+ void simplifyImage(double)

+ void buildUniform(unsigned char)

+ void createFromFile(const std::string &)

+ void saveImage(const std::string &) const

APC Project: SimpleQuadTree

Implementation

Classes

The Image class

This class is mostly a wrapper of the Pixel class. We distinguished it from the
QuadTree class (it does not inherit from it) because there are many features that
they do not share.

Image<T>

T x_size

T y_size

unsigned char min_level

unsigned char max_level

std::shared_ptr<Pixel<T>> parent_cell

+ Image()

+ Image(T, T, unsigned char, unsigned char)

+ ~Image()

+ unsigned int getMinLevel() const

+ unsigned int getMaxLevel() const

+ size_t numberOfPixels() const

+ void clear()

+ void simplifyImage(double)

+ void buildUniform(unsigned char)

+ void createFromFile(const std::string &)

+ void saveImage(const std::string &) const

APC Project: SimpleQuadTree

Implementation

Classes

The way we update the mesh: the RefinementCriterion class

This is a very simple abstract class with an operator telling us if we have to split
an AbstractCell or not.

RefinementCriterion <T>

+ RefinementCriterion()

+ virtual ~RefinementCriterion()

+ virtual bool operator()(std::shared_ptr<AbstractCell<T>>) const = 0

Many important criteria inherit from it:

+ RefineAlwaysCriterion()

+ virtual ~RefineAlwaysCriterion()

+ virtual bool operator()(std::shared_ptr<AbstractCell<T>>) const override

RefineAlwaysCriterion<T> : public RefinementCriterion<T>

- const LipschitzFunction<T> & level_set

+ LevelSetCriterion(const LipschitzFunction<T> &)

+ virtual ~LevelSetCriterion()

+ virtual bool operator()(std::shared_ptr<AbstractCell<T>>) const override

LevelSetCriterion<T> : public RefinementCriterion<T>

- double thr

+ CriterionVariance()

+ virtual ~CriterionVariance()

+ virtual bool operator()(std::shared_ptr<AbstractCell<T>>) const override

CriterionVariance<T> : public RefinementCriterion<T>

APC Project: SimpleQuadTree

Implementation

Classes

The way we update the mesh: the RefinementCriterion class

This is a very simple abstract class with an operator telling us if we have to split
an AbstractCell or not.

RefinementCriterion <T>

+ RefinementCriterion()

+ virtual ~RefinementCriterion()

+ virtual bool operator()(std::shared_ptr<AbstractCell<T>>) const = 0

Many important criteria inherit from it:

+ RefineAlwaysCriterion()

+ virtual ~RefineAlwaysCriterion()

+ virtual bool operator()(std::shared_ptr<AbstractCell<T>>) const override

RefineAlwaysCriterion<T> : public RefinementCriterion<T>

- const LipschitzFunction<T> & level_set

+ LevelSetCriterion(const LipschitzFunction<T> &)

+ virtual ~LevelSetCriterion()

+ virtual bool operator()(std::shared_ptr<AbstractCell<T>>) const override

LevelSetCriterion<T> : public RefinementCriterion<T>

- double thr

+ CriterionVariance()

+ virtual ~CriterionVariance()

+ virtual bool operator()(std::shared_ptr<AbstractCell<T>>) const override

CriterionVariance<T> : public RefinementCriterion<T>

APC Project: SimpleQuadTree

Implementation

Classes

The way we update the mesh: the RefinementCriterion class

This is a very simple abstract class with an operator telling us if we have to split
an AbstractCell or not.

RefinementCriterion <T>

+ RefinementCriterion()

+ virtual ~RefinementCriterion()

+ virtual bool operator()(std::shared_ptr<AbstractCell<T>>) const = 0

Many important criteria inherit from it:

+ RefineAlwaysCriterion()

+ virtual ~RefineAlwaysCriterion()

+ virtual bool operator()(std::shared_ptr<AbstractCell<T>>) const override

RefineAlwaysCriterion<T> : public RefinementCriterion<T>

- const LipschitzFunction<T> & level_set

+ LevelSetCriterion(const LipschitzFunction<T> &)

+ virtual ~LevelSetCriterion()

+ virtual bool operator()(std::shared_ptr<AbstractCell<T>>) const override

LevelSetCriterion<T> : public RefinementCriterion<T>

- double thr

+ CriterionVariance()

+ virtual ~CriterionVariance()

+ virtual bool operator()(std::shared_ptr<AbstractCell<T>>) const override

CriterionVariance<T> : public RefinementCriterion<T>

APC Project: SimpleQuadTree

Implementation

Parallelization of the quadrature

How we parallelize the quadrature

We want to take advantage of the modular nature of the quadtree structure in
order to avoid communications between processes.
The key idea is to have a number of core which is a power of 4 and have a
minimum level large enough, so that we can avoid communications between cores
and each of them has a local tree (no shared memory).

Core 0

Core 1

Core 2

Core 3

And each subtree (core) integrates independently. At the very end, the
sub-integrals are summed with a reduce procedure.

APC Project: SimpleQuadTree

Implementation

Parallelization of the quadrature

How we parallelize the quadrature

We want to take advantage of the modular nature of the quadtree structure in
order to avoid communications between processes.

The key idea is to have a number of core which is a power of 4 and have a
minimum level large enough, so that we can avoid communications between cores
and each of them has a local tree (no shared memory).

Core 0

Core 1

Core 2

Core 3

And each subtree (core) integrates independently. At the very end, the
sub-integrals are summed with a reduce procedure.

APC Project: SimpleQuadTree

Implementation

Parallelization of the quadrature

How we parallelize the quadrature

We want to take advantage of the modular nature of the quadtree structure in
order to avoid communications between processes.
The key idea is to have a number of core which is a power of 4 and have a
minimum level large enough, so that we can avoid communications between cores
and each of them has a local tree (no shared memory).

Core 0

Core 1

Core 2

Core 3

And each subtree (core) integrates independently. At the very end, the
sub-integrals are summed with a reduce procedure.

APC Project: SimpleQuadTree

Tests and results

Tests and results

APC Project: SimpleQuadTree

Tests and results

Construction of highly adaptive grids

We are able to construct very general meshes

APC Project: SimpleQuadTree

Tests and results

Construction of highly adaptive grids

We are able to construct very general meshes

APC Project: SimpleQuadTree

Tests and results

Numerical quadrature

We are able to perform parallel quadratures

Computations have been tested on 4 cores with the following specifications:

Product: Intel(R) Xeon(R) CPU E5-2673 v4 @ 2.30GHz

Taking:
minlevel = 3 maxlevel = 11,

so, for the uniform mesh, we deal with

211 × 211 cells = 4′194′304 cells.

Each time, we perform two tests and take the average time in order to avoid
spurious effects.

APC Project: SimpleQuadTree

Tests and results

Numerical quadrature

We are able to perform parallel quadratures

Computations have been tested on 4 cores with the following specifications:

Product: Intel(R) Xeon(R) CPU E5-2673 v4 @ 2.30GHz

Taking:
minlevel = 3 maxlevel = 11,

so, for the uniform mesh, we deal with

211 × 211 cells = 4′194′304 cells.

Each time, we perform two tests and take the average time in order to avoid
spurious effects.

APC Project: SimpleQuadTree

Tests and results

Numerical quadrature

Ω = [−2, 2]
2

φ(x, y) =

√
x2 + y2 − 1 f(x, y) = I{φ(x,y)≤0}

∫
Ω
f(x, y)dxdy = π.

Naive Mesh 1 Mesh 2 Mesh 3
of cores Time [s] Speedup Time[s] Speedup Time [s] Speedup

1 6.585 - 6.639 - 7.279 -
4 1.721 3.826 1.774 3.742 1.912 3.807

3rd Gaussian Mesh 1 Mesh 2 Mesh 3
of cores Time [s] Speedup Time[s] Speedup Time [s] Speedup

1 7.138 - 6.859 - 73.234 -
4 1.856 3.846 1.917 3.578 18.980 3.858

APC Project: SimpleQuadTree

Tests and results

Numerical quadrature

Ω = [−2, 2] f(x, y) =
1

2πσxσy
e
− 1

2

(
x2

σ2
x

+
y2

σ2
y

)
σx = 0.1 σy = 0.05

∫
Ω
f(x, y)dxdy ' 1.

We refine in the ellipse within 10 standard deviations.

Naive Mesh 1 Mesh 2 Mesh 3
of cores Time [s] Speedup Time[s] Speedup Time [s] Speedup

1 7.376 - 7.061 - 7.397 -
4 1.922 3.838 1.975 3.575 2.007 3.686

3rd Gaussian Mesh 1 Mesh 2 Mesh 3
of cores Time [s] Speedup Time[s] Speedup Time [s] Speedup

1 13.873 - 10.410 - 74.364 -
4 3.633 3.819 3.679 2.830 19.418 3.830

APC Project: SimpleQuadTree

Tests and results

Numerical quadrature

Ω = [−2, 2]
2

φ(x, y) = max {|x− 0.25| − 0.75, |y − 0.25| − 0.75}

f(x, y) = (x
2

+ y
2
) [cos (πx) + sin (πy)] I{φ(x,y)≤0}

∫
Ω
f(x, y)dxdy =

3(−16− 12π + 7π2)

8π3
' 0.186109

Naive Mesh 1 Mesh 2 Mesh 3
of cores Time [s] Speedup Time[s] Speedup Time [s] Speedup

1 6.426 - 6.634 - 7.532 -
4 1.686 3.811 1.757 3.776 1.948 3.867

3rd Gaussian Mesh 1 Mesh 2 Mesh 3
of cores Time [s] Speedup Time[s] Speedup Time [s] Speedup

1 7.057 - 6.914 - 75,551 -
4 1.902 3.710 1.987 3.480 20.245 3.732

APC Project: SimpleQuadTree

Tests and results

Numerical quadrature

Ω = [0, 8]
2

φ(x, y) = min
i,j=0,...,3

(√
(x− (2i + 1))2 + (y − (2j + 1))2 − 0.15

)
f(x, y) = I{φ(x,y)≤0}∫

Ω
ψ(x, y)dxdy =

9π

25

Naive Mesh 1 Mesh 2 Mesh 3
of cores Time [s] Speedup Time[s] Speedup Time [s] Speedup

1 8.145 - 7.445 - 12.063 -
4 2.146 3.795 2.186 3.406 3.167 3.809

3rd Gaussian Mesh 1 Mesh 2 Mesh 3
of cores Time [s] Speedup Time[s] Speedup Time [s] Speedup

1 9.165 - 7.956 - 116.295 -
4 2.375 3.859 2.449 3.249 30.707 3.787

APC Project: SimpleQuadTree

Tests and results

Numerical quadrature

We observe that:
The inhomogeneity of the mesh does not play a very huge role since the time
needed to construct and refine the mesh dominates over the time needed to
integrate on it. Nevertheless, where the inhomogeneity is really strong, we observe
the most important differences.

APC Project: SimpleQuadTree

Tests and results

Numerical quadrature

We observe that:
The inhomogeneity of the mesh does not play a very huge role since the time
needed to construct and refine the mesh dominates over the time needed to
integrate on it. Nevertheless, where the inhomogeneity is really strong, we observe
the most important differences.

APC Project: SimpleQuadTree

Tests and results

Image compression

Three different ε: ε = 0.012, 0.024, 0.048.

Original figures size: 262144 px.

131509 px - comp. ratio = 1.99 84808 px - comp. ratio = 3.09 38152 px - comp. ratio = 6.87

115438 px - comp. ratio = 2.27 69259 px - comp. ratio = 3.78 27394 px - comp. ratio = 9.57

APC Project: SimpleQuadTree

Tests and results

Image compression

Three different ε: ε = 0.012, 0.024, 0.048.

Original figures size: 262144 px.

131509 px - comp. ratio = 1.99 84808 px - comp. ratio = 3.09 38152 px - comp. ratio = 6.87

115438 px - comp. ratio = 2.27 69259 px - comp. ratio = 3.78 27394 px - comp. ratio = 9.57

APC Project: SimpleQuadTree

Tests and results

Image compression

Three different ε: ε = 0.012, 0.024, 0.048.

Original figures size: 262144 px.

131509 px - comp. ratio = 1.99 84808 px - comp. ratio = 3.09 38152 px - comp. ratio = 6.87

115438 px - comp. ratio = 2.27 69259 px - comp. ratio = 3.78 27394 px - comp. ratio = 9.57

APC Project: SimpleQuadTree

Tests and results

Image compression

32188 px - comp. ratio = 8.14 16405 px - comp. ratio = 15.98 6571 px - comp. ratio = 39.89

75172 px - comp. ratio = 3.49 29890 px - comp. ratio = 8.77 8902 px - comp. ratio = 29.45

APC Project: SimpleQuadTree

Tests and results

Image compression

32188 px - comp. ratio = 8.14 16405 px - comp. ratio = 15.98 6571 px - comp. ratio = 39.89

75172 px - comp. ratio = 3.49 29890 px - comp. ratio = 8.77 8902 px - comp. ratio = 29.45

APC Project: SimpleQuadTree

Tests and results

Image compression

171517 px - comp. ratio = 1.53 85258 px - comp. ratio = 3.07 24466 px - comp. ratio = 10.71

APC Project: SimpleQuadTree

Conclusions and perspectives

Conclusions and perspectives

APC Project: SimpleQuadTree

Conclusions and perspectives

Conclusions

We are able to construct highly adaptive meshes with virtually any
criterion, achieving a selective refinement where actually needed.

We are capable of integrating in a parallel fashion on the quadtree using
different quadrature rules.

We can perform image compression in a naive way based on the color
variance, which significantly reduces the size of the images.

APC Project: SimpleQuadTree

Conclusions and perspectives

Conclusions

We are able to construct highly adaptive meshes with virtually any
criterion, achieving a selective refinement where actually needed.

We are capable of integrating in a parallel fashion on the quadtree using
different quadrature rules.

We can perform image compression in a naive way based on the color
variance, which significantly reduces the size of the images.

APC Project: SimpleQuadTree

Conclusions and perspectives

Conclusions

We are able to construct highly adaptive meshes with virtually any
criterion, achieving a selective refinement where actually needed.

We are capable of integrating in a parallel fashion on the quadtree using
different quadrature rules.

We can perform image compression in a naive way based on the color
variance, which significantly reduces the size of the images.

APC Project: SimpleQuadTree

Conclusions and perspectives

Conclusions

We are able to construct highly adaptive meshes with virtually any
criterion, achieving a selective refinement where actually needed.

We are capable of integrating in a parallel fashion on the quadtree using
different quadrature rules.

We can perform image compression in a naive way based on the color
variance, which significantly reduces the size of the images.

APC Project: SimpleQuadTree

Conclusions and perspectives

Perspective and main possible improvements

Different way of storing the tree: it is a trade-off between time-efficiency,
memory-efficiency and possibility of recovering neighbors.

Implement a way of finding neighbors (in our implementation, every cell
should store a pointer to its father).

Improve data distribution between cores when performing parallel
quadratures, in order to exploit any number of physical processors.

Use external libraries to import and export more “user-friendly” image
formats (see .png)

APC Project: SimpleQuadTree

Conclusions and perspectives

Perspective and main possible improvements

Different way of storing the tree: it is a trade-off between time-efficiency,
memory-efficiency and possibility of recovering neighbors.

Implement a way of finding neighbors (in our implementation, every cell
should store a pointer to its father).

Improve data distribution between cores when performing parallel
quadratures, in order to exploit any number of physical processors.

Use external libraries to import and export more “user-friendly” image
formats (see .png)

APC Project: SimpleQuadTree

Conclusions and perspectives

Perspective and main possible improvements

Different way of storing the tree: it is a trade-off between time-efficiency,
memory-efficiency and possibility of recovering neighbors.

Implement a way of finding neighbors (in our implementation, every cell
should store a pointer to its father).

Improve data distribution between cores when performing parallel
quadratures, in order to exploit any number of physical processors.

Use external libraries to import and export more “user-friendly” image
formats (see .png)

APC Project: SimpleQuadTree

Conclusions and perspectives

Perspective and main possible improvements

Different way of storing the tree: it is a trade-off between time-efficiency,
memory-efficiency and possibility of recovering neighbors.

Implement a way of finding neighbors (in our implementation, every cell
should store a pointer to its father).

Improve data distribution between cores when performing parallel
quadratures, in order to exploit any number of physical processors.

Use external libraries to import and export more “user-friendly” image
formats (see .png)

APC Project: SimpleQuadTree

Conclusions and perspectives

Perspective and main possible improvements

Different way of storing the tree: it is a trade-off between time-efficiency,
memory-efficiency and possibility of recovering neighbors.

Implement a way of finding neighbors (in our implementation, every cell
should store a pointer to its father).

Improve data distribution between cores when performing parallel
quadratures, in order to exploit any number of physical processors.

Use external libraries to import and export more “user-friendly” image
formats (see .png)

APC Project: SimpleQuadTree

Conclusions and perspectives

Thank you!

	Introduction
	Aims of the project
	Quadtrees
	Some terminology

	Models and tools to understand what follows
	Level-set theory
	Gaussian quadrature
	Rgb colors and their ``distance''

	Implementation
	Classes
	Parallelization of the quadrature

	Tests and results
	Construction of highly adaptive grids
	Numerical quadrature
	Image compression

	Conclusions and perspectives

