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Abstract

Astrocytes are an important kind of cell in the central nervous system, often act-
ing as a regulatory device. For example, the glutamate stimulus indirectly modi-
fies the calcium concentration by increasing the availability of inositol trisphosphate
which stimulates the endoplasmatic reticulum to release calcium ions into the cy-
toplasm. The incrase of calcium triggers the release of arachidonic acid from the
membrane, with many consequences on the blood flow in the surrouding tissues.

We provide a highly simplified space-extended model to study the dynamics of
Ca2+ ions released thanks to inositol trisphosphate. It accounts for the calcium flux
through transmembrane calcium channels induced by the difference of concentra-
tion and for the calcium release from the channels localized over the endoplasmatic
reticulum membrane, modulated by the level of inositol trisphosphate produced by
the glutamate receptors. This phenomena are modeled in terms of time varying lo-
cal boundary conditions and the concentrations of both species satisfy a diffusion
equation. We propose a discretization of our model by Finite Differences in time and
Finite Elements in space.
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1 Introduction

1.1 The subject and a brief state of the art

Studying the dynamics of the Ca2+ ions in cells, especially in astrocytes, is a crucial
research topic in biology. Indeed, astrocytes are the predominant kind of glia cell in the
central nervous system, though there is no unanimous definition of them, due to their
heterogeneity. These cells have many important functions and two of them especially
drew our attention:

• They “remove” the excess of glutamate, which is one of the most important neuro-
transmitter for vertebrates but can become a neurotoxin when present in excessive
quantity for a long lapse of time.
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• They trigger the release of Ca2+ ions, which can constitute a signal for controlling
the neurovascular unit. In particular, these signals induce significant modifications
in the radii of the arterioles (see [8]).

This last point is the one which interests us the most. More information on the biological
role of the astrocytes can be found in [12].

Cornell-Bell et al. [2] first remarked an increase of Ca2+ concentration inside the
astrocytes when a glutamate stimulus is received. Moreover, they found out that the
concentration of calcium ions tends to have an oscillatory pattern in time. This observa-
tion has been corroborated by in-situ studies such as [13]. The glutamate stimulus acts
on the calcium concentration through the release, at the level of the membrane, of inos-
itol trisphosphate (IP3 for simplicity) into the cytoplasm, as found by [7]. This soluble
messenger is transported towards the endoplasmatic reticulum of the astrocytes where
it triggers the opening of the calcium channels, creating a flux of ions from the endo-
plasmatic reticulum into the cytoplasm [8]. The incrase of cytosolic calcium triggers the
release of arachidonic acid from the membrane phospholipides with many consequences
on the surrouding tissues (see [8] and the references therein).

There are currently many models to address the issue of calcium ions dynamics in an
astrocyte: we cite, in order of publishing date [3], [9], [17] and finally [8]. These studies
have been conducted using reduced order models, where only ODEs are employed. The
strenght of this approach is the (relative) simplicity of the mathematics behind the model
which then allows to consider many regulatory phenomena. On the other hand, the
main disadvantage is that, considering the availability of data concerning the spatial
concentration of Ca2+ ions (especially in vegetal cells), the right context to study these
phenomena involves both space and time.

1.2 Our contribution

We aim at providing a first highly simplified model to study the dynamics of Ca2+ ions,
whose release is triggered by the IP3 stimulus in a space extended context, namely 2D
and/or 3D. To the best of our knowledge, this kind of model is new in litterature.

This model does not aim at being complete and taking all the relevant biological
processes into account. We conceive it as a basic framework which can ease the creation
of more complex models, once the most basic one are completely understood. This has
been done knowing that adding the spatial dimension would result in a complexification
of the overall model.

In [16], five main contributions to the calcium ions dynamics are identified. They are:

• Calcium flux through transmembrane calcium channels. These channels act by
passive transport induced by the difference of concentration between the area out-
side the cell (high concentration) and the cytosol (low concentration), producing a
net influx of ions.

• Calcium flux through the transmembrane calcium pumps mediated by adenosine
triphosphate (ATP). This constitutes an active transport obtained by energy con-
sumption.

• Calcium uptake by the receptors localized over the endoplasmatic reticulum mem-
brane. Mechanism acting against the natural diffusion which drives calcium from
the endoplasmatic reticulum (high concentration) to the cytosol (low concentra-
tion).
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• Calcium release from the channels localized over the endoplasmatic reticulum
membrane. This is modulated by the level of IP3 that is produced by the glutamate
receptors located on the cell membrane.

• Active transport of calcium from the cytosol to the extracellular site. This process
is mediated by the neuron nearby the astrocyte.

In our multidimensional model, only the processes in bold will be taken into account. In
particular, they are modeled in terms of time varying local boundary conditions, whereas
the concentrations satisfy a time-dependent diffusion equation with constant diffusivity.
Tough we have kept the model as simple as possible by considering only the diffusion
of the calcium ions and the IP3, it is evident that it can be enriched by considering the
electric field and its effect on the charged particles, as well as other phenomena.

Finally, we discretize our model in time using Finite Differences and in space using
Finite Elements, in order to obtain some numerical results. For this purpose, we resort
to the FEMOS-MP (Finite Element Modeling-Oriented Simulator for Multi-Physics sim-
ulations) platform [10, 11]. FEMOS-MP is a general-purpose modular code based on the
Galerkin FE method to model complex interplaying multiphysics phenomena in semi-
conductor and biophysics, including both 2D and 3D geometric configurations.

2 Models

2.1 Continum model

2.1.1 Domain

We consider a highly simplified geometry for an astrocyte, where it is seen as a circle
(in 2D) or a sphere (in 3D) of radius Rcyt. For the sake of simplicity, it contains only an
endoplasmatic reticulum (ER) which is circular/spherical of radius Rer with the same
center.

The overall cellular domain is Ω = Ωcyt ∪ Ωer, where Ωcyt is the volume of the
cythosol excluding the endoplasmatic reticulum and Ωer is the volume containing the
endoplasmatic reticulum. These volumes are divided by the boundary Γin given by:

Γin = Ωcyt ∩Ωer, (1)

and we consider its proper subset Γin,c ⊂ Γin which reprensents the channels through
which the calcium can be released from the ER towards the cytoplasm.

The external boundary of the astrocyte Γext given by:

Γext = ∂
(
Ωcyt ∪Ωer

)
, (2)

and is divided into three parts, Γext,c the calcium channels, Γext,r the glutamate receptors
from which we observe an inlet of IP3 molecules, and the remaining part of the bound-
ary. One can consider Figure 1 for a visual intuition of our geometry.

2.1.2 The IP3 problem

As we hinted before, we consider that the IP3 molecules are only subjected to a time-
depending diffusion process with constant diffusivity. Thus, the problem for the con-
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Figure 1: On the left: holed domain used for the calcium computation, where Γext is the
external boundary of the system and the boundary Γin represents the interface between
the interior of the cell and the endoplasmatic reticulum. On the right: full domain used
for the computations concerning the IP3. We observe that the calcium channels and the
IP3 receptors on the external boundary do not coincide.

centration ψIP3 of IP3 reads:
∂ψIP3

∂t (t, x)− DIP3∆ψIP3(t, x) = 0 for (t, x) ∈ [0, T]×Ωcyt ∪Ωer

ψIP3(t, x) = 〈ψIP3〉 for (t, x) ∈ [0, T]× Γext − Γext,r

−DIP3∇ψIP3(t, x) · n = σ(t) for (t, x) ∈ [0, T]× Γext,r,

(3)

where DIP3 > 0 is the diffusion coefficient of the species, T > 0 is the final time, 〈ψIP3〉
is the baseline value of the concentration, n is the normal vector to the boundary of the
domain and σ(t) is the IP3 stimulus which can be triggered during the simulation. The
initial datum is taken as a constant concentration:

ψIP3(t = 0, x) = 〈ψIP3〉 . (4)

Concerning the modeling of the stimulus, we can envision a constant stimulation of
intensity σ > 0 coming at time tstim for the duration of ∆tstim > 0, which reads:

σ(t) =

{
σ for tstim ≤ t < tstim + ∆tstim

0 elsewhere.
(5)

Inded, we do not model the process through which a glutamate stimulus forces the re-
lease of IP3 but we just consider that, at some time, IP3 molecules are diffused starting
from the cellular membrane. From our point of view, the best simple boundary condition
to model a flux of moleculs though the boundary is the Neumann boundary condition.
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2.1.3 The calcium problem

Following the same idea of the IP3, the equations for the concentration of Ca2+ ions
(ψCa2+) are:

∂ψCa2+

∂t (t, x)− DCa2+∆ψCa2+(t, x) = 0 for (t, x) ∈ [0, T]×Ωcyt

ψCa2+(t, x) =
〈
ψCa2+

〉
cyt for (t, x) ∈ [0, T]× Γext − Γext,c

ψCa2+(t, x) =
〈
ψCa2+

〉
cyt for (t, x) ∈ [0, T]× Γin − Γin,c

−DCa2+∇ψCa2+(t, x) · n = gnat
in + gstim

in (ψIP3(t, x)) for (t, x) ∈ [0, T]× Γin,c

−DCa2+∇ψCa2+(t, x) · n = gnat
ext for (t, x) ∈ [0, T]× Γext,c,

(6)

where
〈
ψCa2+

〉
cyt is the baseline concentration inside the cytosol and

〈
ψCa2+

〉
er is that

for the endoplasmatic reticulum. On the other hand gnat
ext and gnat

in are the unstimulated
fluxes of ions and gstim

in (ψIP3(t, x)) accounts for the release due to the stimulation by the
increased concentration of IP3. It is worthwhile to observe that now the problem is
solved only in the cytosol, namely in Ωcyt. The initial condition reads:

ψCa2+(t = 0, x) =
〈
ψCa2+

〉
cyt . (7)

Observe that the second boundary condition could be taken as a Neumann bound-
ary condition in order to model the spontaneous diffusion of calcium from the endoplas-
matic reticulum to the cytoplasm induced by the difference of concentration, adding a
contribution which is not only localized on Γin, c with a flux gnat

in . We decided not to do it
to keep the model as simple as possible.

In order to model the triggered release gstim
in , we can consider that if the mean value

of the concentration of IP3 of the boundary Γin,r goes beyond a certain threshold value
ψthr

IP3 > 0, the calcium is released into the cytoplasm from the endoplasmatic reticulum
with a rate gstim

in > 0:

gstim
in (ψ) =

{
gstim

in if
(
−́Γin,r

ψ dγ
)
> ψthr

IP3

0 otherwise.
(8)

Perhaps, a simpler alternative, which is the one we use due to its easier implementation,
is:

gstim
in (ψ) =

{
gstim

in if maxx∈Γin,r ψ(x) > ψthr
IP3

0 otherwise.
(9)

It is evident that we can envision a stimulated release of ions gstim
in which is spatially

dependent and can provide a more realistic model. In order to do so, it is necessary to
deeply modify the computational environment FEMOS-MP.

2.2 Discretized model

2.2.1 Time discretization

The time discretization of the interval [0, T] is done in the simplest way, considering a
fixed time step ∆t > 0 (possibly small compared to the diffusion time of the species, as
we will formalize soon) and the sequence of discrete times tn where:

tn = n∆t, (10)
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Figure 2: Example of tethraedral mesh, suitable for a finite elements discretization, gen-
erated by GMESH. In green, edges belonging to Ωcyt and in orange those belonging to
Ωer.

for n = 0, . . . ,
⌈ T

∆t

⌉
. The time derivatives in Eq. (3) and (6) are discretized at these discrete

times using first-order finite differences, namely saying that:

∂t f |t=tn '
f n+1 − f n

∆t
, (11)

where f n is the value of a function f at time tn, which is still a function of the space
variable.

Of course, one could envision more sophisticated but also more expensive ways of
treating the time variable, such as Runge-Kutta methods, which nevertheless are behond
the scope of this work. See, for example, [1], for more information.

2.3 Space discretization

For the space discretization, we consider a triangular (for the 2D) or tetrahedral (for
the 3D) mesh generated by the software GMESH, suitable for standard Finite Elements
approximations of elliptic problems (see Figure 2 for an example). Observe that the
boundary of the domains has been rectified to simplify the setting.

We do not treat the principles of the discretization by standard P1 Finite Elements
in this context: the interested reader can find a complete introduction in [15] or equiv-
alent books on numerical analysis. We do not need to have a deep knowledge on the
subject since the spatial discretization of an elliptic problem, once the mesh is provided,
is automatically handled by FEMOS-MP. This is the reason why we provide only semi-
discretized models where the spatial approximation procedure is understood.
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2.3.1 The IP3 discretized model

Using first-order finite differences in time as previously indicated, we obtain the follow-
ing problem at time step tn:

1
∆t ψn+1

IP3 (x)− DIP3∆ψn+1
IP3 (x) = 1

∆t ψn
IP3(x) in Ωcyt ∪Ωer

ψn+1
IP3 (x) = 〈ψIP3〉 on Γext − Γext,r

−DIP3∇ψn+1
IP3 (x) · n = σ(tn) on Γext,r,

(12)

where the unknown to be computed is ψn+1
IP3 . It is interesting to observe that this problem

is independent from the calcium problem and thus can be solved independently.
For this case, we show how to recover the variational formulation of Eq. (12), from

which the Finite Element approximation originates. For the sake of simplicity, take
〈ψIP3〉 = 0 (otherwise use a lifting) and consider the Sobolev space:

V = H1
Γext−Γext,r

:=
{

φ ∈ L2(Ω) : ∇φ ∈
[
L2(Ω)

]2
and φ|Γext−Γext,r = 0

}
, (13)

where the gradient is taken in the weak sense (seen as a distribution acting via duality
product on a regular function) and the value of φ on the boundary is taken in the sense
of the trace. Let us multiply the first equation of (12) and formally integrate by parts. We
obtain:

1
∆t

ˆ
Ω

ψn+1
IP3 (x)φ(x)dx−

ˆ
Ω

DIP3∆ψn+1
IP3 (x)φ(x)dx =

1
∆t

ˆ
Ω

ψn
IP3(x)φ(x)dx (14)

=
1

∆t

ˆ
Ω

ψn+1
IP3 (x)φ(x)dx +

ˆ
Ω

DIP3∇ψn+1
IP3 (x) · ∇φ(x)dx +

ˆ
Γext,r

σ(tn)φ(x)dx, (15)

where we have used the fact that the test function φ vanishes on a part of the boundary.
The weak formulation is:

Find ψn+1
IP3 ∈ V such that ∀φ ∈ V

1
∆t

ˆ
Ω

ψn+1
IP3 (x)φ(x)dx +

ˆ
Ω

DIP3∇ψn+1
IP3 (x) · ∇φ(x)dx +

ˆ
Γext,r

σ(tn)φ(x)dx

=
1

∆t

ˆ
Ω

ψn
IP3(x)φ(x)dx.

One can show by using the Lax-Milgram theorem that this problem is indeed well-posed
in the sense of Hadamard if we assume, for example, that

σ ∈ L∞([0, T]), (16)

which is highly reasonable and always verified with our choice.
Since the Galerkin approximation is an internal approximation, namely the finite

dimensional approximation space Vh is such that

Vh ⊂ V, (17)

the variational formulation is exactly what we use to seek a Finite Element approxima-
tion and becomes a linear algebraic system, since the number of test function φh ∈ Vh is
now finite.
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2.3.2 The calcium discretized model

Doing the same for the calcium ions, we obtain:

1
∆t ψn+1

Ca2+(x)− DCa2+∆ψn+1
Ca2+(x) = 1

∆t ψn
Ca2+(x) in Ωcyt

ψn+1
Ca2+(x) =

〈
ψCa2+

〉
cyt on Γext − Γext,c

ψn+1
Ca2+(x) =

〈
ψCa2+

〉
cyt on Γin − Γin,c

−DCa2+∇ψn+1
Ca2+(x) · n = gnat

in + gstim
in

(
ψn+1

IP3 (x)
)

on Γin,c

−DCa2+∇ψn+1
Ca2+(x) · n = gnat

ext on Γext,c,

(18)

where we decided to discretize the influx of calcium from the endplasmatic reticulum in
this way since the value of ψIP3(t, x) is available at the new time step by solving Eq. 12.

Observe that in both diffusion problems, the Laplacian operator has been discretized
implicitely in time, in order to have an unconditionally stable scheme, so that we can
chose whatever ∆t.

The recovery of the variational formulation for this problem follows the same idea
than for the IP3, so we do not repeat it. We just observe that a useful assumption to ease
the proof of well-posedness of the problem is:

gstim
in ∈ L∞ (R+) . (19)

3 Parameters of the model

In this section, we try to recover the parameters employed in the previous numerical
model. We observe that these values are recovered in a very simple way from what is
available in litterature. Thus, there is a considerable latitude for improving this in the
framework of a joint study with biologists and physiologist in order to adapt them to the
specific context one wants to simulate. The values we provide should be seen as “orders
of magnitude”.

3.1 Domain and simulation time

3.1.1 Geometry

As we have suggested before, the whole astrocyte is supposed to be spherical of volume
(taken from [5]):

V = 5.2 · 10−10 cm3. (20)

Since we consider the cell to be split into two compartments, namely the cytosol (of
volume Vcyt) and the endoplasmatic reticulum (of volume Ver), we have that:

V = Vcyt + Ver
Vcyt

Ver
= 3.5, (21)

where the volume ratio has been taken from [14]. We consider a spherical symmetry
both for the cytosol and the endoplasmatic reticulum, whose radii are respectively Rcyt
and Rer. Simple algebra yields:

Rer =

(
V
6π

)1/3

' 3.0 · 10−4 cm, (22)
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and

Rcyt =

(
7V
12π

)1/3

' 4.6 · 10−4 cm. (23)

Considering the channels on the different boundaries, we do not perform a study
concerning their shape and size. Though we have used few channels with a size com-
parable to the radii we have found (thus “macroscopic” channels compared to the size
of cell) for the sake of simplicity, we consider that a more realistic situation would be to
consider a large amount of small “microscopic” channels. The input file given to GMESH
is shown in Figure 5 and 6 for the sake of completeness. This is certainly a subject of
great improvement of the model.

3.1.2 Simulation time

The overall simulation time T and the time step ∆t are taken as:

T = 0.015 s ∆t = T/300, (24)

in order to ensure that we have:

T & max (τIP3, τCa2+) and ∆t� min (τIP3, τCa2+), (25)

in order to capture the whole diffusion process for both species.

3.2 IP3

3.2.1 Baseline concentration

We first express the baseline concentrations in terms of number of particles over cube
centimeter. On the other hand, in the lumped models (0D), which are the most common
framework for this kind of problem (see references cited at the beginning), these values
are provided in molar concentrations, namely moles over litre, thus a conversion though
the Avogadro’s number NA = 6.022 · 1023 mol−1 is necessary.

Concerning the baseline concentration of IP3 inside the cell, which will be used as
initial datum for the numerical simulation, we take:

〈ψIP3〉 = 5.0 · 10−7mol/l · 6.022 · 10231/mol ' 3.0 · 1014 1
cm3 , (26)

starting from the value given by [16].

3.2.2 Diffusion coefficient and diffusion time

The diffusion coefficient is taken from [4]:

DIP3 = 280
µm2

s
= 2.8 · 10−6 cm2

s
. (27)

Once the diffusion constant is known, it is important to estimate the diffusion time of
the species. Which provides an idea of the time scale on which the concentration profile
homogenizes. Simple dimensional arguments estimate the diffusion time, in a problem
of typical length-scale L and with diffusivity D as:

τ =
L2

2D
. (28)
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Thus, for the IP3, we recover:

τIP3 =

(
Rcyt − Rer

)2

2DIP3
' 4.6 · 10−3 s, (29)

since even if we simulate what happens inside the endoplasmatic reticulum just not
to enforce not “natural” conditions for the IP3 on Γint, we are not interested in what
happens inside this compartment.

Hence, we will select a time-step way smaller than min (τIP3, τCa2+) in order to ob-
serve the diffusion doing its work.

3.2.3 Boundary conditions

We have to select the stimulated flux σ of IP3. The guide principle is that the concentra-
tion of IP3 must reach – during stimulation – the concentration of 1.5 µM observed by
[16]. This is equivalent, with our units, to obtain a concentration of (at least) 9.0 · 1014 1

cm3 ,
which is three times the baseline concentration by Eq. (26).

This has to be obtained taking the stimulation time ∆tstim in consideration. Let us
take

tstim = 30∆t ∆tstim = 30∆t. (30)

Performing numerical simulations only for the IP3, we have observed that a good choice
is:

σ = 1.148 · 10−1. (31)

This grants to observe a IP3 front travelling towards the endoplasmatic reticulum which
is sufficient to excitate the release of calcium ions at some time, but is not sufficient to
keep the threshold level (given by Eq. (42)) for the whole simulation. Thus, we also
observe a comeback to the “rest” state.

Observe that this value needs to be changed whenever the parameters of the stimu-
lation given by Eq. (30) or other parameters of the system are changed. This is due to the
fact that for the time-varying heat equation, the influence of the boundary fluxes on the
solution is strictly linked with the notion of time.

3.3 Calcium

3.3.1 Baseline concentrations

We first express the baseline concentrations taken from [16] in terms of number of parti-
cles over cube centimeter. This gives:〈

ψCa2+

〉
cyt = 1.0 · 10−7 mol/l · 6.022 · 1023 1/mol ' 6.0 · 1013 1

cm3 (32)

〈
ψCa2+

〉
er = 2.0 · 10−6 mol/l · 6.022 · 1023 1/mol ' 1.2 · 1015 1

cm3 (33)

〈
ψCa2+

〉
ext = 2.5 · 10−3 mol/l · 6.022 · 1023 1/mol ' 1.5 · 1018 1

cm3 (34)

We observe that there is a quite substantial difference between the concentration inside
the cell and that in the sourrounding area. These baseline concentrations are used as
initial condition as far as the cytoplasm is concerned and to compute the natural calcium
fluxes though the boundary of the domain.
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3.3.2 Diffusion coefficient and diffusion time

The diffusion coefficient for the calcium ions is taken from [6]:

DCa2+ = 5.3 · 10−6 cm2 s−1. (35)

From this, we can recover the characteristic diffusion time of the species τCa2+ given by:

τCa2+ =

(
Rcyt − Rer

)2

2DCa2+
' 2.4 · 10−3 s, (36)

which provides a useful estimation of the time needed for the simulation, at least when
only diffusion phenomena are involved.

3.3.3 Boundary conditions

In order to estimate gnat
ext , namely the natural flux of calcium from the exterior of the cell

to the cytoplasm passing though the channels, we consider that at each boundary, the
concentration variation takes places in the direction given by n, thus we reduce the com-
putation to a one-dimensional problem. The idea is to approximate the normal deriva-
tive with a Finite Difference over the thickness of the membrane, as if the concentration
profile though the channel were an affine function of the position in the channel. We
enforce:

gnat
ext = −DCa2+

〈
ψCa2+

〉
ext −

〈
ψCa2+

〉
cyt

tm
' −DCa2+

〈
ψCa2+

〉
ext

tm
(37)

' −2.0 · 1019 1
s cm2 , (38)

where tm is the thickness of a cellular membrane (here 4.0 nm as order of magnitude).
The minus sign is given, as we expect, by the fact that the concentration gradient pushes
the calcium inside the cell, going in the opposite direction with respect to the normal
vector n.

Using the same procedure for the other boundary Γin, we obtain:

gnat
in = −DCa2+

〈
ψCa2+

〉
er −

〈
ψCa2+

〉
cyt

tm
' (39)

' −1.5 · 1016 1
s cm2 , (40)

In this last case, we assume that the transition between the cytoplasm and the endoplas-
matic reticulum takes place on a characteristic length with the same value than tm.

For the triggered flux, the simpler choice we can make is to consider that, according
to the observations made by [16], we want to increase the calcium concentration close to
the endoplasmatic reticulum of one order of magnitude. Thus, for the sake of simplicity,
we consider:

gstim
in = 10 gnat

int ' 1.5 · 1017 1
s cm2 . (41)

Finally, we are left to determine the trigger constant ψthr
IP3 which starts the release of

ions from the endoplasmatic reticulum. will be taken in order to carry the simulation in
accordance with what we have seen in the lumped model by [16], namely:

ψthr
IP3 = 1.5 · 10−6mol/l · 6.022 · 10231/mol ' 9.0 · 1014 1

cm3 , (42)



4 RESULTS 13

which was the value we had found in the Section dedicated to the IP3 as the value we
want to reach by stimulation.

Caveat The values for the fluxes we have found before have been obtained by a static
approach. Once we start simulating, we understand, as we already emphasized for the
IP3, that the time plays a huge role when Neumann bondary conditions are involved.
Thus, the value we found are indeed huge compared to the orders of magnitude we
expenct and moreover, they lead to the instability of the solver.

The value of these parameters has to be adjusted considering the observation time T
one desires and should be based on in-vivo biological measures. Progressively tuning
the fluxes thanks to simulations, we retain:

gnat
ext = 1.59 · 10−2 gnat

in = 1.06 · 10−2 gstim
in = 1.06 · 10−1. (43)

4 Results

A possible numerical outcome is shown on Figure 3 and 4. Here, we have put in evidence
the isoline (in white) corresponding to the threshold value of IP3. In the first frame, the
IP3 stimulation starts from the boundary and diffuses towards the endoplasmatic retic-
ulum. In the second frame, it is about to reaching it and starting the release of calcium
ions into the cytosol. This is what we observe in the third and fourth frame. In the lat-
ter, we remark that even if the stimulation is no longer present, the magnitude of the
past one is enough to continue the release phenomenon for some time. In the last frame,
we see that the concentration falls under the threshold, thus the original framework is
re-established.

5 Comments, perspectives and conclusion

5.1 Comments

In this work, we have observed how a simple model can represent a stimulation phe-
nomenon triggered by the concentration of a certain species. As we already mentioned,
this is a “far-from-reality” modelization which pretends to be nothing but a starting point
for more complex models.

These weeks of work have shown how strongly, even if the model is kept as simple
as possible and everything seems clear, we need observations and data. Without them,
the model cannot show its predictive power and we are almost unable to test it against
empirical observations.

5.2 Perspectives

These are the perspectives that we envision to boost the quality of this research:

• Deeper modification of the solver. This is probably the most basic development
we can envision. Our work has been conducted using FEMOS-MP, modifying pieces
of code “by hand”. This way of proceeding is not suitable when considering many
different parameters (think about different stimulation times) and one should make
this automatic by letting the user providing them in the input file.
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• Find better parameters. As told before, this is probably the most crucial point in
this subject. We can figure out two main aspects, namely:

– Cooperation with biologist to obtain data and images from in-vivo. The in-
terest of these data is invaluable, since they provide a spatial and temporal
description, which is exactly the framework of our model.

– Parametric identification through inverse problem. We try to match the obser-
vations mentioned before by repeated Finite Elements simulations, driving
the parameters of the model towards the minimization of a cost functional
representing a “distance” between the outcome of the simulation and the ob-
servations. It could be something like:

J (usim[p]) =
ˆ

Ω
|uobs(x)− usim[p](x)|2 dx, (44)

where the simulated solution depends on a vector of parameters p ∈ K ⊂ Rq,
where K is a compact. The problem we could analyze is:

Find p∗ = argminp∈K J (usim[p]) . (45)

These kind of issue is quite common in mechanics, where we postulate a con-
stitutive law for a material and we try to recover its parameters by matching
simulations and data from specimens.

• A more accurate geometric description of the cell, in terms of shape of the domain
and the channels. Again, this can be achieved, probably more easily than the pre-
vious point, thanks to a joint work with biologists. As already said, we think that
channels should be more but way smaller than what we have considered.

• Construct an enriched model. An ambitious aim could be to recover an oscillatory
behavior even for non-periodic stimulations (like the one we used), as observed for
the ODE models. It is evident that with simple diffusion, we cannot achieve this.
Possible explorations include:

– Enlarge the set of phenomena encoded by the equations. For example, one
can also consider the electric field, since the calcium ions are charged and the
channels can contain fixed charges. Another interesting model could be the
introduction of some non-linear reaction term in the equation, which could
be responsible for the formation of spiral waves (which are periodic phenom-
ena), solitons and other non-linear structures. These structures could interact
with the specific “donought-like” shape of the cell to generate a pulsatile be-
havior.

– Consider more articulate boundary conditions, namely localized one, which
are varying in time according to the local concentrations. This avoids, in case
of spatial inhomogeneities (that we have avoided) to have a non-local effect
of the stimulation, which is indeed non-physical.

5.3 Conclusion

We have observed that the problem is quite hard to tune since the number of variables
playing a role is very high, due to the fact that both space and time are involved. With
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this idea in mind, we have suggested several ways of improving the model in order to
be really capable of using it as a prediction tool.

Finally, I would like to deeply thank Professor Aurelio Giancarlo Mauri for having
proposed this subject, having provided the already-written code of FEMOS-MP, for his
kind help whenever I had a question and for having understood and accepted the diffi-
culties of distance working.
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Figure 3: . Left, concentration of IP3. Right, concentration of calcium ions. From top to
bottom, time steps n = 55, 74, 100, 157, 195. A more detailed description can be found in
the text referencing this figure.
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Figure 4: . Left, concentration of IP3. Right, concentration of calcium ions. From top to
bottom, time steps n = 55, 74, 100, 157, 195.The mesh is emphasized in black.
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Figure 5: Geometry file (to be continued)

// Gmsh project created on Mon Jul 8 14:00:12 2019
//+
lc = 0.0005;
lc2 = 0.001;
Point(1) = {0.00046, 0, 0, lc};
//+
Point(2) = {0.00042498, 0.000176035, 0, lc};
//+
Point(3) = {0.000325269, 0.000325269, 0, lc};
//+
Point(4) = {0.000176035, 0.00042498, 0, lc};
//+
Point(5) = {0, 0.00046, 0, lc};
//+
Point(6) = {-0.000176035, 0.00042498, 0, lc};
//+
Point(7) = {-0.000325269, 0.000325269, 0, lc};
//+
Point(8) = {-0.00042498, 0.000176035, 0, lc};
//+
Point(9) = {-0.00046, 0, 0, lc};
//+
Point(10) = {-0.00042498, -0.000176035, 0, lc};
//+
Point(11) = {-0.000325269, -0.000325269, 0, lc};
//+
Point(12) = {-0.000176035, -0.00042498, 0, lc};
//+
Point(13) = {0, -0.00046, 0, lc};
//+
Point(14) = {0.000176035, -0.00042498, 0, lc};
//+
Point(15) = {0.000325269, -0.000325269, 0, lc};
//+
Point(16) = {0.00042498, -0.000176035, 0, lc};

//+
Point(17) = {0.0003, 0, 0, lc2};
//+
Point(18) = {0.000277164, 0.000114805, 0, lc2};
//+
Point(19) = {0.000212132, 0.000212132, 0, lc2};
//+
Point(20) = {0.000114805, 0.000277164, 0, lc2};
//+
Point(21) = {0, 0.0003, 0, lc2};
//+
Point(22) = {-0.000114805, 0.000277164, 0, lc2};
//+
Point(23) = {-0.000212132, 0.000212132, 0, lc2};
//+
Point(24) = {-0.000277164, 0.000114805, 0, lc2};
//+
Point(25) = {-0.0003, 0, 0, lc2};
//+
Point(26) = {-0.000277164, -0.000114805, 0, lc2};
//+
Point(27) = {-0.000212132, -0.000212132, 0, lc2};
//+
Point(28) = {-0.000114805, -0.000277164, 0, lc2};
//+
Point(29) = {0, -0.0003, 0, lc2};
//+
Point(30) = {0.000114805, -0.000277164, 0, lc2};
//+
Point(31) = {0.000212132, -0.000212132, 0, lc2};
//+
Point(32) = {0.000277164, -0.000114805, 0, lc2};
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Figure 6: Continuation of the geometry file we used.

//+
Line(1) = {1, 2};
//+
Line(2) = {2, 3};
//+
Line(3) = {3, 4};
//+
Line(4) = {4, 5};
//+
Line(5) = {5, 6};
//+
Line(6) = {6, 7};
//+
Line(7) = {7, 8};
//+
Line(8) = {8, 9};
//+
Line(9) = {9, 10};
//+
Line(10) = {10, 11};
//+
Line(11) = {11, 12};
//+
Line(12) = {12, 13};
//+
Line(13) = {13, 14};
//+
Line(14) = {14, 15};
//+
Line(15) = {15, 16};
//+
Line(16) = {16, 1};

//+
Line(17) = {17, 18};
//+
Line(18) = {18, 19};
//+
Line(19) = {19, 20};
//+
Line(20) = {20, 21};
//+
Line(21) = {21, 22};
//+
Line(22) = {22, 23};
//+
Line(23) = {23, 24};
//+
Line(24) = {24, 25};
//+
Line(25) = {25, 26};
//+
Line(26) = {26, 27};
//+
Line(27) = {27, 28};
//+
Line(28) = {28, 29};
//+
Line(29) = {29, 30};
//+
Line(30) = {30, 31};
//+
Line(31) = {31, 32};
//+
Line(32) = {32, 17};

//+
Line Loop(1) = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

//+
Line Loop(2) = {17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32};

//+
Plane Surface(1) = {1, 2};
Plane Surface(2) = {2};

Physical Line(’ChannelCaExt(Contact)’) = {1, 5, 9, 13};
Physical Line(’ChannelIP3Ext(Contact)’) = {2, 6, 10, 14};
Physical Line(’ChannelCaInt(Contact)’) = {18, 22, 26, 30};
Physical Line(’ChannelIP3Int(Contact)’) = {17, 21, 25, 29};
Physical Line(’FreeExt(Contact)’) = {3, 4, 7, 8, 11, 12, 13, 15, 16};
Physical Line(’FreeInt(Contact)’) = {19, 20, 23, 24, 27, 28, 31, 32};

Physical Surface(’Cytoplasm(Silicon)’) = {1};
Physical Surface(’Endoplasmatic(Silicon)’) = {2};
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